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Two-machine flow-shop problem F2|STSI|
∑

Ci

Input data: A set I of n jobs composed of 2 operations

The first operation is processed on machine 1, the second on machine 2

For all i ∈ I, s2
i is the sequence-independent setup time on machine 2

Assumption: data are integer and deterministic

Constraints

Each machine can process only one operation at a time

Operations of a same job cannot be processed simultaneously

Objective

Find a schedule that minimizes the sum of the completion times of the jobs on
the second machine.
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Example
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Properties of the problem

Complexity

Strongly NP-hard [Conway et al., 1967]

Dominating solutions

There is a least one optimal schedule that is:

active (operations are performed as soon as possible, no unforced
idle time)

such that the sequences of the jobs on both machines are the
same (permutation schedule) [Conway et al., 1967, Allahverdi et
al., 1999]

→ The problem comes to find one optimal sequence of jobs.
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Literature

Lower bounds and exact algorithms

L.B.: Single machine problems
[Ignall and Schrage, 1965], [Ahmadi and Bagchi, 1990], [Della Croce et
al., 1996], [Allahverdi, 2000]
Branch-and-bound, up to 10, 15 and 30 jobs (pi ≤ 20), 20 jobs (pi ≤ 100)

L.B.: Lagrangian relaxation of precedence constraints
[van de Velde, 1990], [Della Croce et al, 2002], [Gharbi et al., 2013]
Branch-and-bound, up to 20 and 45 jobs (pi ≤ 10)

L.B.: linear relaxation of a positional/assignment model
[Akkan and Karabati, 2004], [Hoogeven et al., 2006], [Haouari and
Kharbeche, 2013], [Gharbi et al., 2013] : 35 jobs (pi ≤ 100)

L.B.: Lagrangian relaxation of the job cardinality ctr., flow model
[Akkan and Karabati, 2004]
Branch-and-bound, up to 60 jobs (pi ≤ 10), 45 jobs (pi ≤ 100)

B. Detienne, R. Sadykov, S. Tanaka Two-machine flow-shop 7 / 50



Introduction Lower bounds Branch-and-bound Numerical results

Contribution

Branch-and-bound based on the network flow model of [Akkan and
Karabati, 2004]

Improvements

Stronger lower bound by using a larger size network
Advantages

Stronger Lagrangian relaxation bound
Allows integration of dominance rules inside the network

Disadvantages
(Too) high memory and CPU time requirements
→ Reduction of the size of the network using Lagrangian cost
variable fixing

Extension to sequence-independent setup times
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Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

Cm
[k]: completion time of the job in position k on machine m

Lc
k: time lag elapsed between the completion of the job in position

k on machines 1 and 2

Lc
k = C2

[k] −C1
[k] =max

¦

0, Lc
k−1 + s2

[k] − p1
[k]

©

+ p2
[k]

J1

J1 J2

J2

Lc
1 + s2

[2] ≤ p1
[2]→ Lc

2 = p2
[2]

J3

J3

Lc
2 + s2

[3] > p1
[3]→ Lc

3 = Lc
2 + s2

[3] − p1
[3] + p2

[3]
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Lag-based models

Formulating the objective function

Minimizing the sum of completion times:

n
∑

k=1

C2
[k] =

n
∑

k=1

�

C1
[k] + Lc

k

�

=
n
∑

k=1

� k
∑

r=1

p1
[r] + Lc

k

�

=
n
∑

k=1

�

(n− k+ 1)p1
[k] + Lc

k

�
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Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

Lc
k = C2

[k] −C1
[k]: time lag elapsed between the completion of the job in

position k on machine 1 and on machine 2

Total completion time - Similar to 1||
∑

i Ci

J1

J1 J2

J2

J3

J3

3p1
1 + Lc

1 2p1
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2 p1
3 + Lc

3
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Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

Recursive formula for lag: Lc
k =max

¦

0, Lc
k−1 + s2
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©

+ p2
[k]

Total completion time
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Network flow formulation [Akkan et Karabati, 2004]

Lag-based models

Cost:
∑n

k=1 C2
[k] =

∑n
k=1

�

(n− k+ 1)p1
[k] + Lc

k

�

The contribution of a job to the objective function only depends on:

Its position in the sequence

Its lag, which is directly deduced from the lag of the preceding job

Structure of the network

One node ≡ a pair (position, lag)

One arc ≡ the processing of a job
initial node determines the position
terminal node determines the lag

→ The cost of an arc is the corresponding contribution to the
objective function
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Network flow formulation [Akkan et Karabati, 2004]: G1

p1 = (10, 7); p2 = (7, 3); p3 = (1, 3)

`= 0

`= 7

`= 3
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`= 7
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`= 3
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J3

J2
cost=7× 3+ 3

= 24

J1
cost=37

J3
cost=6

Shortest path + Each job is processed exactly once
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Network flow formulation [Akkan et Karabati, 2004]: G1

p1 = (10, 7); p2 = (7, 3); p3 = (1, 3)
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cost=7× 3+ 3

= 24

J1
cost=37

J3
cost=6

Shortest path +
((((
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Each job is processed once→ L.B. by Lagrangian relaxation
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Network flow formulation [Akkan et Karabati, 2004]: G1

Disadvantage: many infeasible paths→ "weak" lower bound
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Extended network flow formulation: G2

Structure of the network

One node ≡ a triplet (position, lag, job)

One arc ≡ the processing of a job
initial node determines the position and the job
terminal node determines the lag and the next job

→ The cost of an arc is the corresponding contribution to the
objective function
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Extended network G2

;
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Extended network G2 - Example of reduction

;
`= 0

J1
`= 0

J2
`= 0

J3
`= 0

J1
`= 7

J2
`= 7

J3
`= 7
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Jobs cannot be processed twice consecutively
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Extended network G2 - Example of reduction
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Extended network G2 - Example of reduction

;
`= 0

J1
`= 0

J2
`= 0

J3
`= 0

J2
`= 7

J3
`= 7

J1
`= 3

J2
`= 3

J3
`= 3

k = 0 k = 1 k = 2 k = 3 k = 4

If p1
i + s2

j ≤ p1
j + s2

i , p2
i + s2

i ≤ p2
j + s2

j , and p2
j ≤ p2

i , then i→ j
⇒ J3→ J2 [Allahverdi, 2000]
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Extended network G2 - Example of reduction
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Extended network G2 - Example of reduction

Given a position k, a lag ` and a sub-sequence σ:

f (k,`,σ): cost of scheduling σ at (k,`)

L(k,`,σ): lag of the last job of σ scheduled at (k,`)

Dominance

Sub-sequence σ is dominated at (k,`) by sub-sequence σ′ if:

The set of jobs in σ and σ′ is the same

f (k,`,σ)> f (k,`,σ′)
The partial schedule up to the end of σ′ will be less costly

L(k,`,σ)≥ L(k,`,σ′)
The partial schedule after σ′ will not be more costly
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Extended network G2 - Example of reduction

;
`= 0

J1
`= 0

J3
`= 0

J3
`= 7

J1
`= 3

J2
`= 3

J4
`= 9

J4
`= 7

k = 0 k = 1 k = 2 k = 3 k = 4

f (k = 1,`= 0,σ = (J1, J3)) = 37

L(k = 1,`= 0,σ = (J1, J3)) = 9

f (k = 1,`= 0,σ = (J3, J1)) = 22

L(k = 1,`= 0,σ = (J3, J1)) = 7

Example: |σ|= 2 allows us to remove some arcs
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Lagrangian cost variable fixing

Additional input data

An upper bound UB of the optimum is known

Principle

Assume that one dominant optimal solution satisfies hypothesis h
The optimal path goes through a given arc

Compute a (Lagrangian) lower bound LBh under h

If LBh > UB, then h is not satisfied in any optimal dominant
solution
The arc can be removed from the graph
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Lagrangian cost variable fixing (1)

;
`= 0

∗
`= 0

v
Ji

w
Jje

SP(0, v)

SP(w,∗)

SP(e) = SP(;, v) + cost(e) + SP(w,∗)

If SP(e)−
∑

jπj > UB,
then e is part of no optimal solution.

Computing SP(e) for all e ∈ E is done in O(|E|)-time

Removing arcs from the network
Hypothesis: the path goes through e
[Ibaraki and Nakamura, 1994]

Given Lagrangian multipliers π
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Lagrangian cost variable fixing (2)

;
`= 0

∗
`= 0

v
Ji

w
Jje

SP¬i(0, v)

SP¬i(w,∗)

SP¬i(a, b) : SP from a to b
going through no arc representing Ji

SPi(e) = SP¬i(;, v) + cost(e) + SP¬i(w,∗)

If SPi(e)−
∑

jπj > UB,
then e is part of no optimal solution.

Computing SPi(e) for all e ∈ E and i ∈ I is done in O(n|E|)-time

Removing arcs from the network
[Detienne et al., 2012]

Given Lagrangian multipliers π
and a job Ji

e represents Ji
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Lagrangian cost variable fixing (2)

;
`= 0

∗
`= 0

v
Jk

w
Jje

SP¬i(0, v)
SPi(0, v)

SPi(w,∗)
SP¬i(w,∗)

SPi(a, b) : SP from a to b
going through exactly one arc representing Ji

SP¬i(e) =min{SP¬i(;, v) + cost(e) + SPi(w,∗),
SPi(;, v) + cost(e) + SP¬i(w,∗)}

If SPi(e)−
∑

jπj > UB,
then e is part of no optimal solution.

Computing SPi(e) for all e ∈ E and i ∈ I is done in O(n|E|)-time

Removing arcs from the network
[Detienne et al., 2012]

Given Lagrangian multipliers π
and a job Ji

e does not represent Ji
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Lower bound improvement using local dominance

Inspection of optimal solutions of Lagrangian subproblems: dominated
or infeasible 3 job-paths are removed from the graph

vk1,l1
j1

vk1,l2
j2

vk1,l3
j3

vk2,l4
j4

vk3,l5
j5

vk3,l7
j1

vk3,l6
j6

vk1,l1
j1

vk1,l2
j2

vk1,l3
j3

vk2,l4
j4

vk3,l5
j5

vk3,l7
j1

vk3,l6
j6

v′′
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Preprocessing

Initial upper bound

A good feasible solution is obtained by a local search procedure
Dynasearch [Tanaka, 2010]

Pre-computation of lower bounds

Construction of network G1

Lagrangian cost variable fixing (subgradient procedure)

Construction of the extended network G2 from G1

Lagrangian cost variable fixing (subgradient procedure)

For the best Lagrangian multipliers, SPi(v,∗) and SP¬i(v,∗) are
stored for each i ∈ I and v ∈ V
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Branching scheme

Solution space explored

Feasible sequences of jobs ≡ Feasible constrained paths in G2

Depth-First Search, starting from start node ;

Branching

Current sequence σ (≡ path) is extended with job Ji iff:

There is a corresponding arc in G2

All predecessors of Ji are in σ and Ji is not in σ

Predictive memorization?: The sequence of the last 5 jobs obtained
would not be dominated by one of its permutations

Static node memorization: The sequence is not dominated by a
previously explored sequence [Baptiste et al., 2004], [T’Kindt et al.,
2004], [Kao et al., 2008]
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Lower bound for σ ≡ path ending at v in G2

Lower bound coming from jobs not sequenced yet

LB1 = cost(σ) +max
i/∈σ

SPi(v,∗)−
∑

i/∈σ

πi

Lower bound coming from sequenced jobs

LB2 = cost(σ) +max
i∈σ

SP¬i(v,∗)−
∑

i/∈σ

πi

Computing max{LB1, LB2} is done in O (n)-time.
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Tentative upper bound

Weakness of the approach

If the initial upper bound is too large, variable fixing is not efficient.

Overall procedure

1 Build and filter G1 using the initial upper bound (dynasearch)
2 If G1 is sufficiently small, build and filter G2 from G1, run the

Branch-and-Bound, STOP
3 Build and filter G2 from G1 using a tentative upper bound
4 Run the Branch-and-Bound
5 If a feasible solution is found, it is optimal, STOP
6 Otherwise, increase the tentative upper bound and go to 3
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Setup

Coded in C++ (MS VS 2012)
MS Windows 8 laptop with 16GB RAM and Intel Core i7 @2.7GHz

Instances of F2||
∑

Ci

Randomly generated [Akkan and Karabati, 2004], [Haouari and
Kharbeche 2013]

Up to 140 jobs, p1
i and p2

i are drawn fromU [1, 100]

Instances of F2||
∑

Ci

Subset of the testbed of [Gharbi et al., 2013]

Up to 100 jobs, p1
i , p2

i and s2
i are drawn fromU [1, 100]
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Size of the networks - With initial upper bound

Number of nodes in G2 (in thousands)
F2||

∑

Ci F2|STsi |
∑

Ci
Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 2.3 7.8 17.0 35.8
[1− 100] 26.5 92.7 212.4 391.3 246.7 426.9 608.4 1 234.1

Number of arcs in G2 (in thousands)
F2||

∑

Ci F2|STsi |
∑

Ci
Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 12.9 68.2 217.6 642.7
[1− 100] 164.2 937.0 2925.4 6431.4 3818.3 8224.6 13 550.5 35 554.8

Number of nodes in G2 after filtering (in thousands)
F2||

∑

Ci F2|STsi |
∑

Ci
Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.4 2.2 6.6 13.0
[1− 100] 5.2 35.5 92.5 166.2 163.7 284.8 396.8 766.3

Number of arcs in G2 after filtering (in thousands)
F2||

∑

Ci F2|STsi |
∑

Ci
Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.8 7.6 38.6 99.2
[1− 100] 16.4 170.7 639.0 1465.4 1866.5 4236.0 6931.7 18 544.7
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Size of the networks - With tentative upper bound

For problem F2|STSI |
∑

Ci, using the best feasible tentative upper
bound

Number of nodes in G2 after filtering (in thousands)
Initial upper bound Best feasible tentative upper bound

n=60 n=70 n=80 n=100 n=60 n=70 n=80 n=100
163.7 284.8 396.8 766.3 63.1 88.4 135.1 237.1

Number of arcs in G2 after filtering (in thousands)
Initial upper bound Best feasible tentative upper bound

n=60 n=70 n=80 n=100 n=60 n=70 n=80 n=100
1 866.5 4 236.0 6 931.7 18 544.7 344.1 544.5 1013.3 2 237.8
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No setup times - F2||
∑

Ci

Results for 100−job instances (40 instances)

Avg. time: 216 s., Max. time: 602 s.

Tentative upper bound is useless
Root gap ≈ 7× 10−4

Variable fixing reduces the number of arcs by a factor 5
Avg.: ≈ 166K nodes, ≈ 1.4M arcs, Max.: 239K nodes, 2.9M arcs

Results for 140−job instances (40 instances)

Avg. time: 752 s., Max. time: 3006 s.

Tentative upper bound is useless

Small processing times: 18/20 solved in 1000 s.

Large processing times: 12/20 solved in 1000 s.
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Sequence-independent setup times - F2|STSI|
∑

Ci

Results for 100− job instances (200 instances)

Avg. time: 935 s., Max. time: 6443 s.

Tentative upper bound is critical
Reduces the number of arcs from 18.5M to 2.2M at the root node

Lagrangian Variable fixing + Tentative upper bound reduce the
number of arcs by a factor 17
Avg.: ≈ 237K nodes, ≈ 2.2M arcs, Max.: 440K nodes, 4.9M arcs

Solves 145/200 instances in 1000 s.
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Impact of static node memorization

When the rule is disabled

Problem F2||
∑

Ci, 100−job instances

Large processing times: 38/40 solved in 1000 s.

Max. solving time: 602s. → 7700 s.

Average computing time multiplied by a factor 4

Average number of B&B nodes increased by a factor 45: 3.9M→
179M

Maximum number of B&B nodes: 2.7 billions
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Conclusion

Contributions

New lower bound for F2||
∑

Ci and F2|STSI |
∑

Ci

Efficient management of the size of the extended network

Dominance rules are embedded in the structure of the network

The lower bound is used with success in an exact solving approach

All 100-job instances of our test bed are solved in less than two hours
98% are solved in less than one hour

Future directions

Use Successive Sublimation Dynamic Programming instead of
Branch-and-Bound

Adapt for other min-sum objective functions?

Adapt for more than two machines permutation flowshop?
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Thank you for your attention
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Network flow formulation [Akkan et Karabati, 2004]: G1

V1, A1 : sets of nodes and arcs

xv,w,j : amount of flow on the arc representing j between nodes v and w

min
∑

(v,w,j)∈A1

cv,w,jxv,w,j

s.t.
∑

(v,w,j)∈A1

xv,w,j =
∑

(w,v,j)∈A1

xw,v,j ∀v ∈ V1 − {(0, 0), (n+ 1, 0)}

∑

(v,w,j)∈A1

xv,w,j = 1 ∀j= 1, . . . , n

∑

(0,w,j)∈A1

x0,w,j = 1

xv,w,j ∈ {0, 1} ∀(v, w, j) ∈ E1
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Lower bound by Lagrangian relaxation

V1, A1 : sets of nodes and arcs

xv,w,j : amount of flow on the arc representing j between nodes v and w

L(π) =min
∑

(v,w,j)∈A1

cv,w,jxv,w,j+
n
∑

j=1

πj

 

∑

(v,w):(v,w,j)∈A1

xv,w,j − 1

!

s.t.
∑

(v,w,j)∈A1

xv,w,j =
∑

(w,v,j)∈A1

xw,v,j ∀v ∈ V1 − {(0, 0), (n+ 1, 0)}

���
���

�
∑

(v,w,j)∈A1

xv,w,j = 1 (((
(((∀j= 1, . . . , n

∑

(0,w,j)∈A1

x0,w,j = 1

xv,w,j ∈ {0, 1} ∀(v, w, j) ∈ A1
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Lower bound by Lagrangian relaxation

V1, A1 : sets of nodes and arcs

xv,w,j : amount of flow on the arc representing j between nodes v and w

L(π) =min
∑

(v,w,j)∈A1

�

cv,w,j+πj

�

xv,w,j−
n
∑

j=1

πj

s.t.
∑

(v,w,j)∈A1

xv,w,j =
∑

(w,v,j)∈A1

xw,v,j ∀v ∈ V1 − {(0, 0), (n+ 1, 0)}

���
���

�
∑

(v,w,j)∈A1

xv,w,j = 1 ((((
((∀j= 1, . . . , n

∑

(0,w,j)∈A1

x0,w,j = 1

xv,w,j ∈ {0, 1} ∀(v, w, j) ∈ A1

Subproblem: shortest path in the network
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Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

Cm
[k]: completion time of the job in position k on machine m

Lc
k: time lag elapsed between the completion of the job in position

k on machines 1 and 2

Lc
k = C2

[k] −C1
[k] =max

¦

0, Lc
k−1 + s2

[k] − p1
[k]

©

+ p2
[k]

J1

J1 J2

J2

Lc
1 + s2

[2] ≤ p1
[2]→ Lc

2 = p2
[2]

J3

J3

Lc
2 + s2

[3] > p1
[3]→ Lc

3 = Lc
2 + s2

[3] − p1
[3] + p2

[3]
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¦
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©
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Lag-based models

Formulating the objective function

Minimizing the sum of completion times:

n
∑

k=1

C2
[k] =

n
∑

k=1

�

C1
[k] + Lc

k

�

=
n
∑

k=1

� k
∑

r=1

p1
[r] + Lc

k

�

=
n
∑

k=1

�

(n− k+ 1)p1
[k] + Lc

k

�
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Example

p1 = (3, 5); p2 = (7, 4); p3 = (2, 7)

J1

J1

30

8 14

J2

3+ 7
= 10

J2

21

J3

3+ 7+ 2
= 12

J3

Cost of the schedule: (3× 3+ 5) + (7× 2+ 4) + (2× 1+ 9) = 43
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Lower bound for σ ≡ path ending at v in G2

Lower bound coming from jobs not sequenced yet

LB1 = cost(σ) +max
i/∈σ

SPi(v,∗)−
∑

i/∈σ

πi

Lower bound coming from sequenced jobs

LB2 = cost(σ) +max
i∈σ

SP¬i(v,∗)−
∑

i/∈σ

πi

Computing max{LB1, LB2} is done in O (n)-time.
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