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The star scheduling problem

i

ri dipimi

[ri ; di ): visibility
interval of star i

pi : required
duration of the
observation of star i

wi : scientific
interest of observing
star i

The meridian mi ∈ [ri , di ) is a mandatory instant of the observation.
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The star scheduling problem

Instance: A set N of stars; each star i ∈ N has an interest wi , an
observation duration pi and a visibility window [ri ; di )

1 2

3

4 5

6

Question: find N ′ ⊂ N as well as the starting dates of the observations
si ,∀i ∈ N ′ such that

for all i ∈ N ′: [si ; si + pi ) ⊂ [ri ; di )

for all (i1, i2) ∈ N ′2 : [si1 ; si1 + pi1) ∩ [si2 ; si2 + pi2) = ∅∑
i∈N ′ wi is maximized
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The star scheduling problem
Instance: a setM of nights, a set N of stars; each star i ∈ N has an
interest wi , an observation duration pji and a visibility window [r ji ; d

j
i ),

dependent of the night j of the observation.

1

2
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4

5

6

night 1 night 2

The practical instances include around 800 stars for a 6 months
planification.
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The star scheduling problem

Nicolas Catusse, Hadrien Cambazard, Nadia Brauner, Pierre Lemaire, and
Bernard Penz - Anne-Marie Lagrange and Pascal Rubini (IJCAI 2016) :

Branch-and-price, local search

Model extensions:
Observation duration depending on starting date
Calibrations
Night reservation
Variable interests
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Processing-time dependent profit

Instance: A set N of jobs. Each job j ∈ N has deadline dj and a profit
function wj(pj), pj the allocated processing-time of job j

Profit function for a classical scheduling problem, for the linear model
and for a star observation:

p

wj(p)

pj

wj

p

wj(p)

i

p

wj(p)

Question: find N ′ ⊂ N such that
∑

j∈N ′ wj(pj) is maximized.
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Processing-time dependent profit

Controllable processing-times, Imprecise computation:
Dvir Shabtay and George Steiner. A survey of scheduling with
controllable processing times, 2007.

p

wj(p)
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Processing-time dependent profit

Late work:
Malgorzata Sterna. A survey of scheduling problems with late work
criteria, 2011.

j

dj

Increasing Reward with Increasing Service (IRIS):
Jayanta K Dey, James Kurose, and Don Towsley. On-line processor
scheduling for class of iris (increasing reward with increasing service)
real-time tasks, 1993.
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Processing-time dependent profit

Goal: finding the NP-hardness limits for each model of the profit function
depending on the machine environment and the constraints.

Machine environment: 1, Pm, P.

Constraints
Release dates
Preemption
Identical parameters
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Simple examples

For all j ∈ T :
wj(p) = bjp

where bj is called the growth rate of job j .

p

wj(p)
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Simple examples
No constraints, Common deadline:
1|wj(p) = bjp, dj=d | −

∑
wj(pj):

p

wj(p)

p

wj(p)

p

wj(p)

=⇒ Schedule only the job with the maximum growth rate bj .

d t

b
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p
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p
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Simple examples

For all j ∈ T :

wj(p) =

{
bjp, p ≤ pmax

j

wmax
j , p > pmax

j

where wmax
j is called the maximum profit, bj is called the growth rate

and pmax
j the maximum processing-time of job j .

p

wj(p)

pmax
j

wmax
j = bjp

max
j
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Simple examples
No constraint, Common deadline
1|wj(p) = min

{
bjp,w

max
j

}
, dj=d | −

∑
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p

wj(p)

p

wj(p)

p

wj(p)

=⇒ Schedule jobs in non-increasing order of their growth rate
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Simple examples

Distinct deadlines:
1|wj(p) = min

{
bjp,w

max
j

}
| −
∑

wj(pj)

The set of solutions for which every job is scheduled and in
non-decreasing order of their deadline is dominant.

max
n∑

j=1

bjpj

sj + pj ≤ dj ∀j = 1, . . . , n
sj+1 = sj + pj ∀j = 1, . . . , n − 1
bjpj ≤ wmax

j ∀j = 1, . . . , n
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Strongly NP-complete, reduction from 3-Partition.

r0 d0

. . .

0 D

t

b
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Simple examples

Release dates and preemption
1|wj(p) = min

{
bjp,w

max
j

}
, rj , pmtn| −

∑
wj(pj)

s

T1

T2

...

TN

I1

I2

...

I2n−1

t

−b1

pmax
1

−b2

pmax
2

−bN

pmax
n

0
∞

0
∞

0
∞

0
∞

0

α2 − α1

0

α3 − α2

0

α2N − α2N−1
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p

wj(p)

p

wj(p)

p

wj(p)

p

wj(p)

p

wj(p)

i

p

wj(p)

p

wj(p)
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For all j ∈ T :

wj(p) =

{
0 p < pmin

j

wmin
j + bj(p − pmin

j ), p ≥ pmin
j

where wmin
j is called the minimum profit, bj is called the growth rate and

pmin
j the minimum processing-time of job j .

p

wj(p)

pmin
j

wmin
j
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Dominant structure of solutions:

p

wj(p)

pmin
j

wmin
j

...

...
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...

...

U1(S) = {j ∈ S , pj = D}
U2(S) = {j ∈ S , Tj is a special job}
U3(S) =

{
j ∈ S , pj = pmin + r

}
U4(S) =

{
j ∈ S , pj = pmin

}
U0(S) = {j /∈ S}

t(S) =

{
0, if U2(S) = ∅
D−pj
pmin , if U2(S) = {Tj}

Tj

1

U3

−n3

U2

−n2

U1

−n1

U4

−n4

U0

−n0

(−w
j(D

), 1
)

(−wj((t
+ 1)p

min + r), 1)

(−wj(p
min + r), 1)

(−wj (pmin), 1)

(0, 1)
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0 ≤ N1(S) ≤ m 0 ≤ t(S) ≤ n − 1

N2(S) =

{
0, if t(S) = 0
1, otherwise

N3(S) = m − N1(S)− N2(S)

N4(S) = (q − 1)N3(S) + t(S)

N0(S) = N − N1(S)− N2(S)− N3(S)− N4(S)

=⇒ The problem can be solved in polynomial time by solving a
polynomial number of minimum cost flows

28



The star scheduling problem Processing-time dependent profit Simple examples P | LPSTIP, pmin
j =pmin, dj=d Linear model with release dates Conclusion

P | LPSTIP, pmin
j =pmin, dj=d

0 ≤ N1(S) ≤ m 0 ≤ t(S) ≤ n − 1

N2(S) =

{
0, if t(S) = 0
1, otherwise

N3(S) = m − N1(S)− N2(S)

N4(S) = (q − 1)N3(S) + t(S)

N0(S) = N − N1(S)− N2(S)− N3(S)− N4(S)

=⇒ The problem can be solved in polynomial time by solving a
polynomial number of minimum cost flows

28



The star scheduling problem Processing-time dependent profit Simple examples P | LPSTIP, pmin
j =pmin, dj=d Linear model with release dates Conclusion

P | LPSTIP, pmin
j =pmin, dj=d

0 ≤ N1(S) ≤ m 0 ≤ t(S) ≤ n − 1

N2(S) =

{
0, if t(S) = 0
1, otherwise

N3(S) = m − N1(S)− N2(S)

N4(S) = (q − 1)N3(S) + t(S)

N0(S) = N − N1(S)− N2(S)− N3(S)− N4(S)

=⇒ The problem can be solved in polynomial time by solving a
polynomial number of minimum cost flows

28



The star scheduling problem Processing-time dependent profit Simple examples P | LPSTIP, pmin
j =pmin, dj=d Linear model with release dates Conclusion

P | LPSTIP, pmin
j =pmin, dj=d

P |

P | dj=d

P | pmin
j =pmin

Pm |

1 | bj=b, dj=d

1 | wmin
j =wmin, bj=b, dj=d

1 | dj=d

1 | bj=b1 |

1 | wmin=wmin, dj=d

Pm | wmin
j =wmin, dj=d

Pm | wmin
j =wmin

1 | wmin
j =wmin

1 | wmin
j =wmin, bj=b

Pm | pmin
j =pminP | bj=b

P | pmin
j =pmin, bj=b

P | pmin
j =pmin, dj=d

P | pmin
j =pmin,wmin

j =wmin

P | wj(p)=w(p)

P | wmin
j =wmin, bj=b, dj=d

P | wmin
j =wmin

Pm | wmin
j =wmin, bj=b, dj=d
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Linear model with release dates

For all j ∈ T :
wj(p) = bjp

where bj is called the growth rate of job j .

p

wj(p)

32
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Linear model with release dates
Dominance: every scheduled job starts and ends on a rj or a dj (but not
necessarly its own).

Schedule jobs in non-increasing order of their growth rates?

r1 d1

r2 d2

r3 d3

r4 d4

t

b

=⇒ Optimal solution for this instance
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Conclusion

Interesting class of scheduling problems
Various resolution methods: list algorithms, linear programming,
flows, classical reductions. . . (good exercices for students!)
Some “basic” cases still open

Integration in the practical problem
Integration in other problem models to improve accuracy or speed
up resolution.
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Questions?
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