

Processing-time dependent profit maximization scheduling problems

with applications to star observations

Florian Fontan

under the supervision of Nadia Brauner and Pierre Lemaire

- 1 The star scheduling problem
- 2 Processing-time dependent profit
- 3 Simple examples
- 4 $P \mid \text{LPSTIP}, p_j^{\min} = p^{\min}, d_j = d$
- 5 Linear model with release dates

1 The star scheduling problem

2 Processing-time dependent profit

3 Simple examples

4
$$P \mid \text{LPSTIP}, p_j^{\min} = p^{\min}, d_j = d$$

5 Linear model with release dates

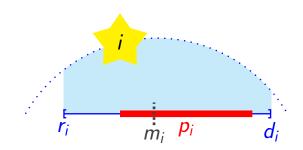
The star scheduling problem Processing-time dependent profit Simple examples P | LPSD

The star scheduling problem

The star scheduling problem Processing-time dependent profit Simple examples P | LPST

G.SCOP The sta

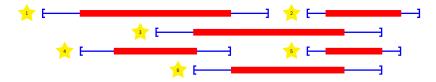
The star scheduling problem



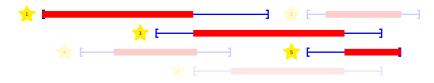
- [*r_i*; *d_i*): visibility interval of star *i*
- *p_i*: required duration of the observation of star *i*
- *w_i*: scientific interest of observing star *i*

The meridian $m_i \in [r_i, d_i)$ is a mandatory instant of the observation.

Instance: A set N of stars; each star $i \in N$ has an interest w_i , an observation duration p_i and a visibility window $[r_i; d_i)$



Instance: A set \mathcal{N} of stars; each star $i \in \mathcal{N}$ has an interest w_i , an observation duration p_i and a visibility window $[r_i; d_i)$



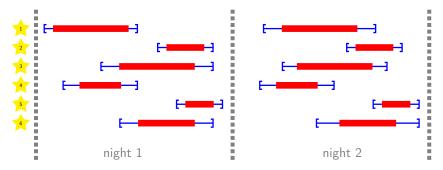
Question: find $\mathcal{N}' \subset \mathcal{N}$ as well as the starting dates of the observations $s_i, \forall i \in \mathcal{N}'$ such that

• for all $i \in \mathcal{N}'$: $[s_i; s_i + p_i) \subset [r_i; d_i)$

• for all
$$(i_1, i_2) \in {\mathcal{N}'}^2$$
 : $[s_{i_1}; s_{i_1} + p_{i_1}) \cap [s_{i_2}; s_{i_2} + p_{i_2}) = \emptyset$

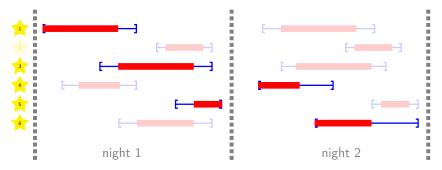
• $\sum_{i \in \mathcal{N}'} w_i$ is maximized

Instance: a set \mathcal{M} of nights, a set \mathcal{N} of stars; each star $i \in \mathcal{N}$ has an interest w_i , an observation duration p_i^j and a visibility window $[r_i^j; d_i^j)$, dependent of the night j of the observation.



The practical instances include around 800 stars for a 6 months planification.

Instance: a set \mathcal{M} of nights, a set \mathcal{N} of stars; each star $i \in \mathcal{N}$ has an interest w_i , an observation duration p_i^j and a visibility window $[r_i^j; d_i^j)$, dependent of the night j of the observation.



The practical instances include around 800 stars for a 6 months planification.

Nicolas Catusse, Hadrien Cambazard, Nadia Brauner, Pierre Lemaire, and Bernard Penz - Anne-Marie Lagrange and Pascal Rubini (IJCAI 2016) :

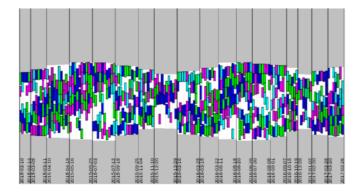
Branch-and-price, local search

Model extensions:

- Observation duration depending on starting date
- Calibrations
- Night reservation
- Variable interests

The star scheduling problem Processing-time dependent profit Simple examples P | LPST

The star scheduling problem



The star scheduling problem Processing-time dependent profit Simple examples P | LPST

Processing-time dependent profit

- 1 The star scheduling problem
- 2 Processing-time dependent profit
- 3 Simple examples
- **4** $P \mid \text{LPSTIP}, p_j^{\min} = p^{\min}, d_j = d$
- 5 Linear model with release dates

Instance: A set N of jobs. Each job $j \in N$ has deadline d_j and a profit function $w_j(p_j)$, p_j the allocated processing-time of job j

Profit function for a classical scheduling problem, for the linear model and for a star observation:

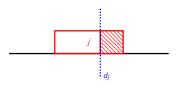
Question: find $\mathcal{N}' \subset \mathcal{N}$ such that $\sum_{j \in \mathcal{N}'} w_j(p_j)$ is maximized.

Controllable processing-times, Imprecise computation:

 Dvir Shabtay and George Steiner. A survey of scheduling with controllable processing times, 2007.

Late work:

 Malgorzata Sterna. A survey of scheduling problems with late work criteria, 2011.



- Increasing Reward with Increasing Service (IRIS):
 - Jayanta K Dey, James Kurose, and Don Towsley. On-line processor scheduling for class of iris (increasing reward with increasing service) real-time tasks, 1993.

Goal: finding the NP-hardness limits for each model of the profit function depending on the machine environment and the constraints.

Machine environment: 1, Pm, P.

Constraints

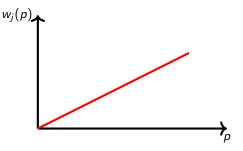
- Release dates
- Preemption
- Identical parameters

- 1 The star scheduling problem
- 2 Processing-time dependent profit
- 3 Simple examples
- **4** $P \mid \text{LPSTIP}, p_j^{\min} = p^{\min}, d_j = d$
- 5 Linear model with release dates

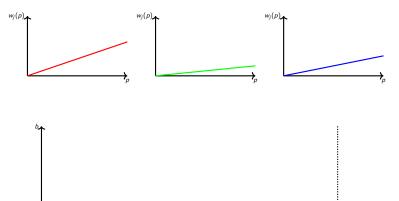
For all $j \in \mathcal{T}$:

$$w_j(p) = b_j p$$

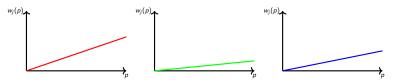
where b_j is called the growth rate of job j.



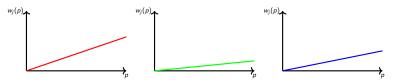
• No constraints, Common deadline: $1|w_j(p) = b_j p, d_j = d| - \sum w_j(p_j)$:



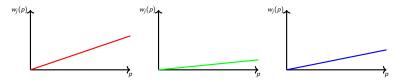
• No constraints, Common deadline: $1|w_j(p) = b_j p, d_j = d| - \sum w_j(p_j)$:



• No constraints, Common deadline: $1|w_j(p) = b_j p, d_j = d| - \sum w_j(p_j)$:

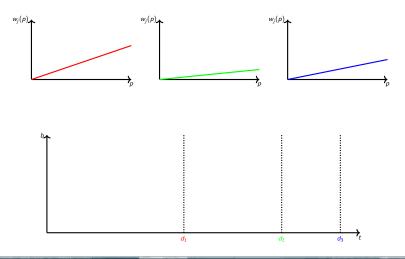


• No constraints, Common deadline: $1|w_j(p) = b_j p, d_j = d| - \sum w_j(p_j)$:

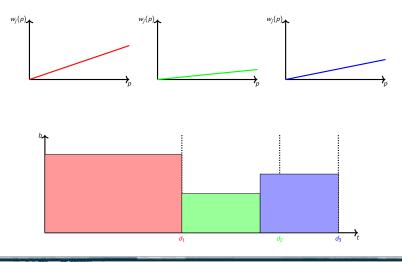


 \implies Schedule only the job with the maximum growth rate b_j .

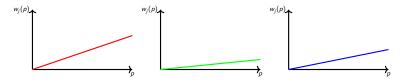
• Distinct deadlines $1|w_j(p) = b_j p| - \sum w_j(p_j)$:



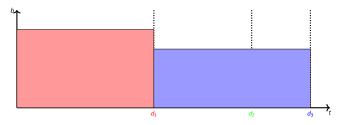
• Distinct deadlines $1|w_j(p) = b_j p| - \sum w_j(p_j)$:



• Distinct deadlines $1|w_j(p) = b_j p| - \sum w_j(p_j)$:



 \implies Schedule the best available job till its deadline.



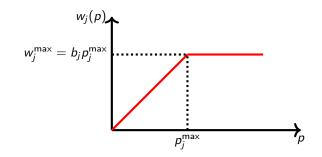
G-SCOP

Simple examples

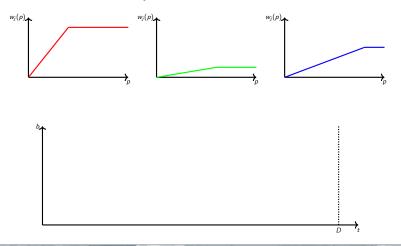
For all $j \in \mathcal{T}$:

$$w_j(p) = \left\{egin{array}{cc} b_j p, & p \leq p_j^{ ext{max}} \ w_j^{ ext{max}}, & p > p_j^{ ext{max}} \end{array}
ight.$$

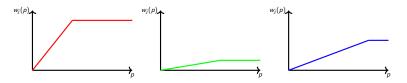
where w_j^{max} is called the maximum profit, b_j is called the growth rate and p_j^{max} the maximum processing-time of job j.



■ No constraint, Common deadline $1|w_j(p) = \min \{b_j p, w_j^{\max}\}, d_j = d| - \sum w_j(p_j)$



■ No constraint, Common deadline $1|w_j(p) = \min\{b_j p, w_j^{\max}\}, d_j = d| - \sum w_j(p_j)$



 \implies Schedule jobs in non-increasing order of their growth rate

Distinct deadlines: $1|w_j(p) = \min \{b_j p, w_j^{\max}\} | -\sum w_j(p_j)$

- Distinct deadlines:
 - $1|w_j(p) = \min\left\{b_j p, w_j^{\max}\right\}| \sum w_j(p_j)$
 - The set of solutions for which every job is scheduled and in non-decreasing order of their deadline is dominant.

- Distinct deadlines:
 - $1|w_j(p) = \min\left\{b_j p, w_j^{\max}\right\}| \sum w_j(p_j)$
 - The set of solutions for which every job is scheduled and in non-decreasing order of their deadline is dominant.

$$\max \sum_{j=1}^n b_j p_j$$

$$\begin{split} s_j + p_j &\leq d_j & \forall j = 1, \dots, n \\ s_{j+1} &= s_j + p_j & \forall j = 1, \dots, n-1 \\ b_j p_j &\leq w_j^{\max} & \forall j = 1, \dots, n \end{split}$$

■ Release dates: $1|w_j(p) = \min \{b_j p, w_i^{\max}\}, r_j| - \sum w_j(p_j)$

Release dates:

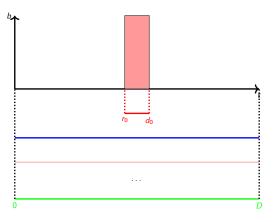
 $1|w_j(p) = \min\left\{b_j p, w_j^{\max}\right\}, r_j| - \sum w_j(p_j)$

Strongly NP-complete, reduction from 3-Partition.

Release dates:

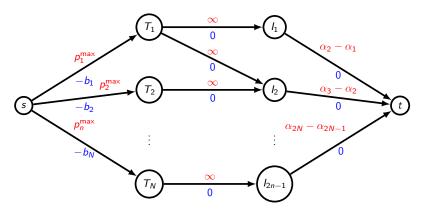
$$\mathbf{1}|w_j(p) = \min\left\{b_j p, w_j^{\max}\right\}, \mathbf{r}_j| - \sum w_j(p_j)$$

Strongly NP-complete, reduction from 3-Partition.

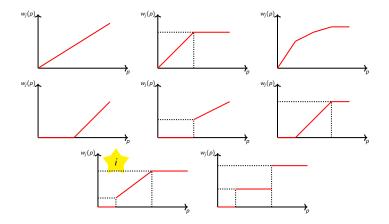


■ Release dates and preemption $1|w_j(p) = \min \{b_j p, w_j^{\max}\}, r_j, pmtn| - \sum w_j(p_j)$

■ Release dates and preemption $1|w_j(p) = \min \{b_j p, w_j^{\max}\}, r_j, pmtn| - \sum w_j(p_j)$



Simple examples



$$P \mid \text{LPSTIP}, p_i^{\min} = p^{\min}, d_j = d$$

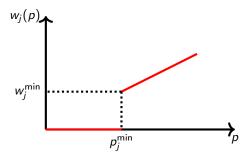
- 1 The star scheduling problem
- 2 Processing-time dependent profit
- 3 Simple examples
- 4 $P \mid \text{LPSTIP}, p_j^{\min} = p^{\min}, d_j = d$
- 5 Linear model with release dates

 $P \mid \text{LPSTIP}, p_i^{\min} = p^{\min}, d_j = d$

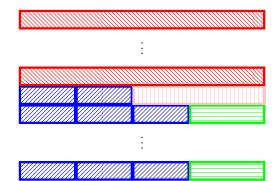
For all $j \in \mathcal{T}$:

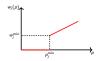
$$w_j(p) = \left\{ egin{array}{cc} 0 & p < p_j^{\min} \ w_j^{\min} + b_j(p-p_j^{\min}), & p \geq p_j^{\min} \end{array}
ight.$$

where w_j^{\min} is called the minimum profit, b_j is called the growth rate and p_j^{\min} the minimum processing-time of job *j*.

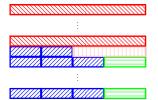


Dominant structure of solutions:





$$P \mid \text{LPSTIP}, p_i^{\min} = p^{\min}, d_i = d$$



$$U_{1}(S) = \{j \in S, \quad p_{j} = D\}$$

$$U_{2}(S) = \{j \in S, \quad T_{j} \text{ is a special job}$$

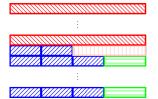
$$U_{3}(S) = \{j \in S, \quad p_{j} = p^{\min} + r\}$$

$$U_{4}(S) = \{j \in S, \quad p_{j} = p^{\min}\}$$

$$U_{0}(S) = \{j \notin S\}$$

$$t(S) = \begin{cases} 0, & \text{if } U_{2}(S) = \emptyset \\ \frac{D - p_{j}}{p^{\min}}, & \text{if } U_{2}(S) = \{T_{j}\} \end{cases}$$

$$P \mid \text{LPSTIP}, p_i^{\min} = p^{\min}, d_i = d$$



$$U_{1}(S) = \{j \in S, \quad p_{j} = D\}$$

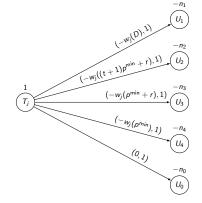
$$U_{2}(S) = \{j \in S, \quad T_{j} \text{ is a special job}\}$$

$$U_{3}(S) = \{j \in S, \quad p_{j} = p^{\min} + r\}$$

$$U_{4}(S) = \{j \in S, \quad p_{j} = p^{\min}\}$$

$$U_{0}(S) = \{j \notin S\}$$

$$t(S) = \begin{cases} 0, & \text{if } U_{2}(S) = \emptyset \\ \frac{D - p_{j}}{\rho^{\min}}, & \text{if } U_{2}(S) = \{T_{j}\} \end{cases}$$



 $P \mid \text{LPSTIP}, p_i^{\min} = p^{\min}, d_j = d$

 $0 \leq N_1(S) \leq m$ $0 \leq t(S) \leq n-1$

$$P \mid \text{LPSTIP}, p_i^{\min} = p^{\min}, d_j = d$$

$$0 \leq N_1(S) \leq m$$
 $0 \leq t(S) \leq n-1$

$$N_{2}(S) = \begin{cases} 0, & \text{if } t(S) = 0\\ 1, & \text{otherwise} \end{cases}$$

$$N_{3}(S) = m - N_{1}(S) - N_{2}(S)$$

$$N_{4}(S) = (q - 1)N_{3}(S) + t(S)$$

$$N_{0}(S) = N - N_{1}(S) - N_{2}(S) - N_{3}(S) - N_{4}(S)$$

28

$$P \mid \text{LPSTIP}, p_i^{\min} = p^{\min}, d_j = d$$

$$0 \leq N_1(S) \leq m$$
 $0 \leq t(S) \leq n-1$

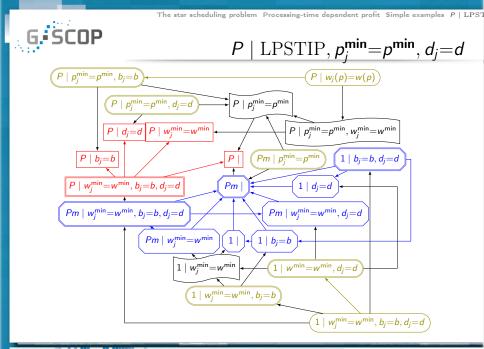
$$N_{2}(S) = \begin{cases} 0, & \text{if } t(S) = 0\\ 1, & \text{otherwise} \end{cases}$$

$$N_{3}(S) = m - N_{1}(S) - N_{2}(S)$$

$$N_{4}(S) = (q - 1)N_{3}(S) + t(S)$$

$$N_{0}(S) = N - N_{1}(S) - N_{2}(S) - N_{3}(S) - N_{4}(S)$$

 \implies The problem can be solved in polynomial time by solving a polynomial number of minimum cost flows



$P \mid \text{LPSTIP}, p_j^{\min} = p^{\min}, d_j = d$

Problem	Compl.	Ref
	P	Th. 1
$\begin{array}{c} P \mid LP \\ \hline P \mid LBP, b_i = b, d_i = d \end{array}$	sNPc	Th. 3
	wNPc	Th. 3
$Pm \mid LBP, b_j = b, d_j = d$	sNPc	
$P \mid \text{LBP}, w_j^{\max} = w^{\max}, d_j = d$		
$Pm \mid \text{LBP}, w_j^{\max} = w^{\max}, d_j = d$	wNPc	
1 LBP	Р	Th. 2
$P \mid \text{LBP}, w_j(p) = w(p), d_j = d$	Р	Th. 4
$P \mid \text{LPST}, b_j = b$	Р	Th. 5
$P \mid \text{LPSTIP}, w_j^{\min} = w^{\min}, b_j = b, d_j = d$	$_{\rm sNPc}$	Th. 6
$Pm \mid \text{LPSTIP}, w_j^{\min} = w^{\min}, b_j = b, d_j = d$	wNPc	Th. 6
$1 \mid \text{LPSTIP}, b_j = \vec{b}, d_j = d$	wNPc	Th. 6
$P \mid \text{LPSTIP}, p_j^{\min} = p^{\min}, d_j = d$	Р	Th. 7
$P \mid \text{LPSTIP}, p_j^{\min} = p^{\min}, b_j = b$	Р	Th. 8
$P \mid \text{LBPST}, w_i^{\text{max}} = w^{\text{max}}, p_i^{\text{min}} = p^{\text{min}}, d_j = d$	sNPc	Th. 9
$Pm \mid \text{LBPST}, w_j^{\max} = w^{\max}, p_j^{\min} = p^{\min}, d_j = d$	wNPc	Th. 9
$P \mid \text{LBPST}, p_i^{\text{max}} = p^{\text{max}}, d_j = d$	Р	Th. 11
$1 \mid \text{LBPST}, b_j = b, d_j = d$	wNPc	Th. 10
1 LBPST, $b_j = b, p_j^{\min} = p^{\min}, d_j = d$	Р	
$P \mid \text{LBPSTIP}, w_i^{\min} = w^{\min}, b_j = b, p_i^{\max} = p^{\max}, w_i^{\max} = w^{\max}, d_j = d$	sNPc	Th. 12
$Pm \mid \text{LBPSTIP}, w_j^{\min} = w^{\min}, b_j = b, p_j^{\max} = p^{\max}, w_j^{\max} = w^{\max}, d_j = d$	wNPc	Th. 12
1 LBPSTIP, $b_j = b$, $w_j^{\max} = w^{\max}$, $d_j = d$	wNPc	Th. 13
1 LBPSTIP, $p_j^{\max} = p^{\max}, w_j^{\max} = w^{\max}, d_j = d$	wNPc	Th. 13
$Pm \mid PLP, p_i^k = p^k$	Р	Th. 14
$1 \mid \text{PLP}, w_i^k = w^k, b_i^k = b$	Р	Th. 15
$1 \mid \text{PLP}, w_j^k = w^k, b_j^k = b_j, d_j = d$	P	Th. 16

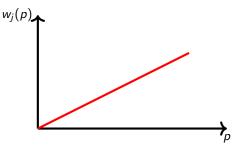
- 1 The star scheduling problem
- 2 Processing-time dependent profit
- 3 Simple examples
- **4** $P \mid \text{LPSTIP}, p_j^{\min} = p^{\min}, d_j = d$
- 5 Linear model with release dates

Linear model with release dates

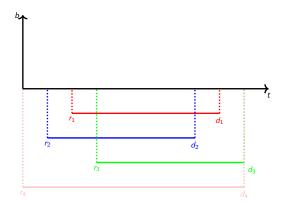
For all $j \in \mathcal{T}$:

$$w_j(p) = b_j p$$

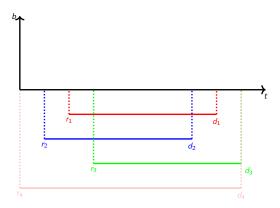
where b_j is called the growth rate of job j.



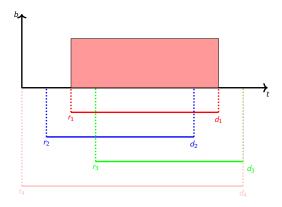
Dominance: every scheduled job starts and ends on a r_j or a d_j (but not necessarly its own).



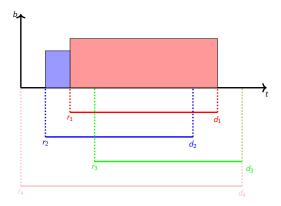
Dominance: every scheduled job starts and ends on a r_j or a d_j (but not necessarly its own).



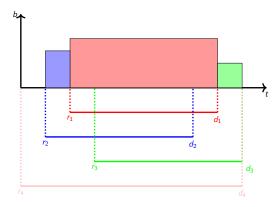
Dominance: every scheduled job starts and ends on a r_j or a d_j (but not necessarly its own).



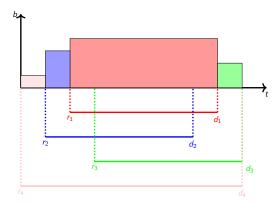
Dominance: every scheduled job starts and ends on a r_j or a d_j (but not necessarly its own).



Dominance: every scheduled job starts and ends on a r_j or a d_j (but not necessarly its own).

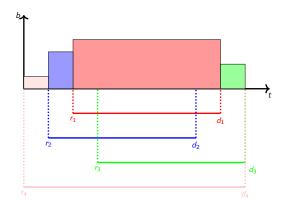


Dominance: every scheduled job starts and ends on a r_j or a d_j (but not necessarly its own).

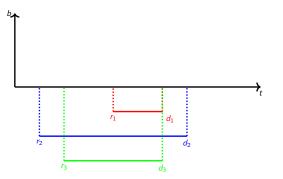


Dominance: every scheduled job starts and ends on a r_j or a d_j (but not necessarly its own).

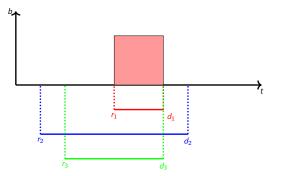
Schedule jobs in non-increasing order of their growth rates?

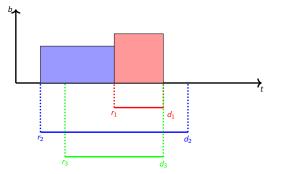


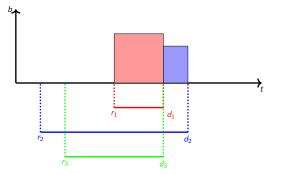
 \implies Optimal solution for this instance

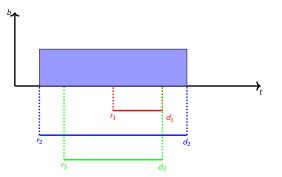


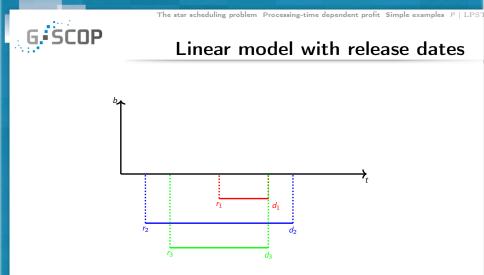
Linear model with release dates



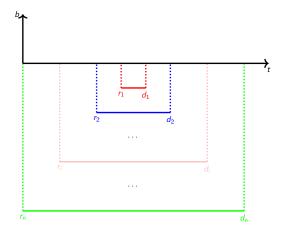


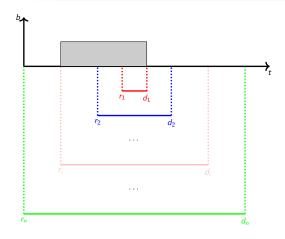




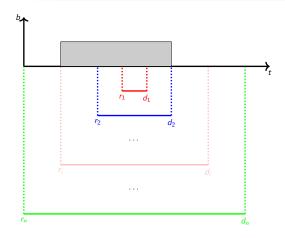


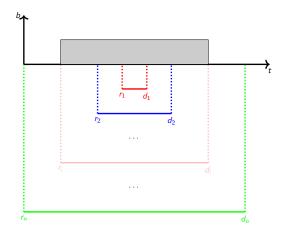
 \implies a job which is the best on its time-window is either scheduled on its whole time-window, or not scheduled at all.



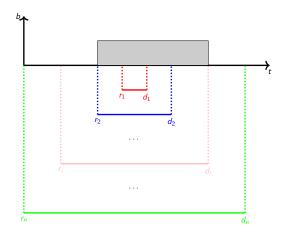


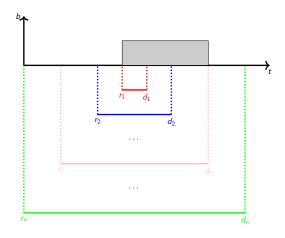
Linear model with release dates



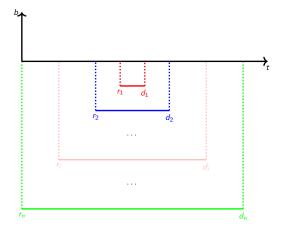


Linear model with release dates

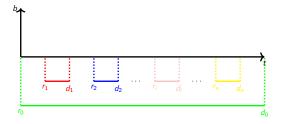




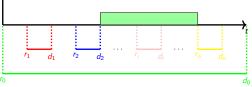
Linear model with release dates



At step *j*, $O(j^2)$ possible states \implies solved in polynomial time by a shortest path algorithm

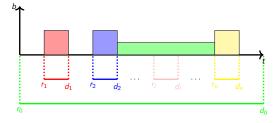






 $O(n^2)$ possible schedules for job T_0 .

Linear model with release dates

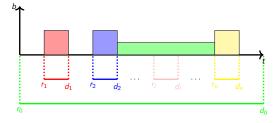


 $O(n^2)$ possible schedules for job T_0 .

Once the schedule of \mathcal{T}_0 is fixed, the problem can be trivially solved in polynomial time.

The star scheduling problem Processing-time dependent profit Simple examples $P \mid LPST$

Linear model with release dates

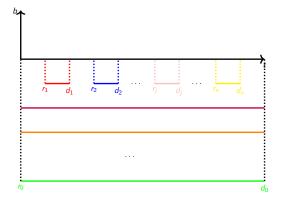


 $O(n^2)$ possible schedules for job T_0 .

Once the schedule of \mathcal{T}_0 is fixed, the problem can be trivially solved in polynomial time.

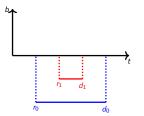
 \implies solved in polynomial time

The star scheduling problem Processing-time dependent profit Simple examples $P \mid LPST$



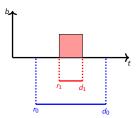
 A vertex for each possible schedule of each job with weight equal to the profit of the schedule

 $\implies O(n^3)$ vertices

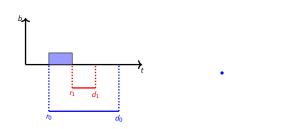


 A vertex for each possible schedule of each job with weight equal to the profit of the schedule

 $\implies O(n^3)$ vertices

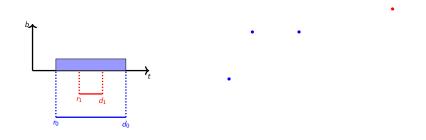


- A vertex for each possible schedule of each job with weight equal to the profit of the schedule
 - $\implies O(n^3)$ vertices
- An edge between two vertices iff the corresponding schedules are not compatible (same job or common instant)

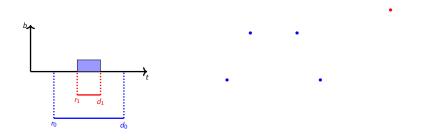


- A vertex for each possible schedule of each job with weight equal to the profit of the schedule
 - $\implies O(n^3)$ vertices
- An edge between two vertices iff the corresponding schedules are not compatible (same job or common instant)

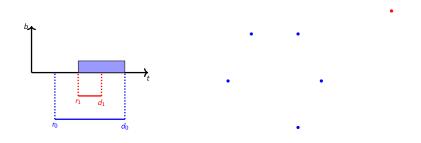
- A vertex for each possible schedule of each job with weight equal to the profit of the schedule
 - $\implies O(n^3)$ vertices
- An edge between two vertices iff the corresponding schedules are not compatible (same job or common instant)



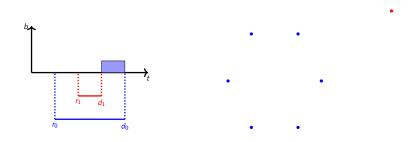
- A vertex for each possible schedule of each job with weight equal to the profit of the schedule
 - $\implies O(n^3)$ vertices
- An edge between two vertices iff the corresponding schedules are not compatible (same job or common instant)



- A vertex for each possible schedule of each job with weight equal to the profit of the schedule
 - $\implies O(n^3)$ vertices
- An edge between two vertices iff the corresponding schedules are not compatible (same job or common instant)

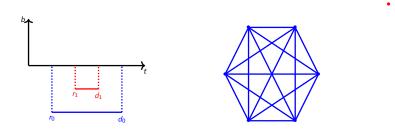


- A vertex for each possible schedule of each job with weight equal to the profit of the schedule
 - $\implies O(n^3)$ vertices
- An edge between two vertices iff the corresponding schedules are not compatible (same job or common instant)



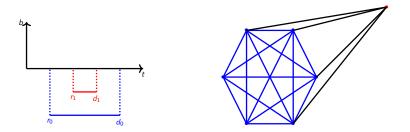
 A vertex for each possible schedule of each job with weight equal to the profit of the schedule

 $\implies O(n^3)$ vertices



 A vertex for each possible schedule of each job with weight equal to the profit of the schedule

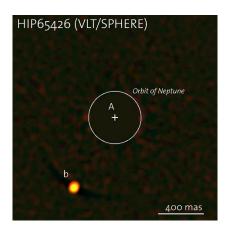
 $\implies O(n^3)$ vertices



The star scheduling problem Processing-time dependent profit Simple examples $P \mid LPST$

Conclusion

- Interesting class of scheduling problems
- Various resolution methods: list algorithms, linear programming, flows, classical reductions... (good exercices for students!)
- Some "basic" cases still open
- Integration in the practical problem
- Integration in other problem models to improve accuracy or speed up resolution.



Questions?