
Merging and Memorization 1

Merging and Memorization in search trees :
on the exact solution of scheduling problems

 Lei Shang (PhD Student)

 Pr. Vincent T’Kindt (Director)

 Université François Rabelais Tours

Laboratoire d’Informatique (EA 6300)

Equipe ROOT (CNRS ERL 6305)

shang@univ-tours.fr

mailto:shang@univ-tours.fr
mailto:shang@univ-tours.fr
mailto:shang@univ-tours.fr

Merging and Memorization 2

Outline

1. Problem: 1||∑𝑇𝑖

2. Branch & Merge (theoretical guarantee)

3. Memorization (practical efficiency)

4. Extension : Branch & Memorize framework on
sequencing problems

Outline

Merging and Memorization 3 3 Merging and Memorization

Problem: 1||∑𝑇𝑖

 Jobset 𝑆, single machine, 𝑝𝑗=processing time, 𝑑𝑗=due date

 Objective: minimize the total tardiness ∑ max(0, 𝐶𝑗 − 𝑑𝑗)𝑗

 NP-hard (ordinary sense)

 In theory (complexity):
 Brute force 𝑂(𝑛!)

 Dynamic programming: 𝑂∗(2𝑛)in time and space

 Divide & Conquer: 𝑂∗(4𝑛), polynomial space (Gurevich et al., 1987)

 Branch & Reduce: 𝑂∗(3𝑛), polynomial space (F. D. Croce et al, 2015)

 Branch & Merge => 𝑂∗((2 + 𝜖)𝑛)in time and polynomial space

 In practice:
 The B&B of Szwarc et al. => 500 jobs in 2001. (900 jobs today!)

 Memorization => 1200 jobs.

 Divide &
Conquer:
𝑂∗(4𝑛),
polynomial
space
(Gurevich et
al., 1987)

Merging and Memorization 4 4 Merging and Memorization

In Theory

Objective

 Exact algorithms with worst-case running time/space
guarantee (𝑂∗ 𝑐𝑛 , with 𝑐a constant as small as possible)

Notation

 LPT (Longest Processing Time first) job sequence: (1,2, . . , 𝑛)

 EDD (Earliest Due Date first) job sequence: (𝑒1, 𝑒2, . . , 𝑒𝑛)

 Divide &
Conquer:
𝑂∗(4𝑛),
polynomial
space
(Gurevich et
al., 1987)

 NB:
𝑂∗ exp(𝑛) =
𝑂(𝑝𝑜𝑙𝑦 𝑛 ∙
exp(𝑛))

Merging and Memorization 5 5 Merging and Memorization

In Theory

Lawler’s Property (1977)

 Let job 1 = 𝑒ℎ, then job 1can only be set in position 𝑠 ≥ ℎ

 Jobs preceding 1 are: 𝐵1 = {𝑒1, 𝑒2, . . , 𝑒ℎ−1, 𝑒ℎ+1, . . , 𝑒𝑠}

 Jobs following 1 are: 𝐴1 = {𝑒𝑠+1, 𝑒𝑠+2, . . , 𝑒𝑛}

 => Worst case: LPT=EDD

 Divide &
Conquer:
𝑂∗(4𝑛),
polynomial
space
(Gurevich et
al., 1987)

 NB:
𝑂∗ exp(𝑛) =
𝑂(𝑝𝑜𝑙𝑦 𝑛 ∙
exp(𝑛))

Merging and Memorization 6 6 Merging and Memorization

Branch & Reduce

 LPT=EDD

 Depth-First

𝑇 𝑛 ≤ 2𝑇 𝑛-1 + 2𝑇 𝑛-2 + ⋯+ 2𝑇 1 ⇒ 𝑇 𝑛 = 𝑂(3𝑛)

Merging and Memorization 7 7 Merging and Memorization

Branch & Reduce

 LPT=EDD

 Notation

Merging and Memorization 8 8 Merging and Memorization

Branch & Reduce: observations

 LPT=EDD

 Depth-First

 Some sub-problems are solved repeatedly!

Merging and Memorization 9 9 Merging and Memorization

 LPT=EDD

 Depth-First

 Some sub-problems are solved repeatedly!

Branch & Reduce: observations

Merging and Memorization 10 10 Merging and Memorization

Branch & Merge (left)

 Idea: merge nodes based on the
fixed part

 Solve sub-problem {2,3} (e.g. 32)

 Compare 321 and 132

 Cannot apply on all pairs

Merging and Memorization 11 11 Merging and Memorization

Branch & Merge (left)

 Idea: merge identical nodes based on the fixed part

 On first k nodes, k is a constant

 Why not just cut?

Merging and Memorization 12 12 Merging and Memorization

Branch & Merge (left)

 Idea: merge identical nodes based on the fixed part

 On first k nodes, k is a constant

 Transitivity

 General case

Merging and Memorization 13 13 Merging and Memorization

Branch & Merge (right)

 More complex…

Merging and Memorization 14 14 Merging and Memorization

Branch & Merge

 Recurrence: 𝑇 𝑛 ≤ 2𝑇 𝑛 − 1 + 5𝑘 − 1 𝑇 𝑛 − 𝑘 − 1 + 𝑂(𝑝 𝑛)

Merging and Memorization 15 15 Merging and Memorization

Branch & Merge

 𝑇 𝑛 converges to O∗(2n). 𝑇 𝑛 = 𝑂∗(2.0367𝑛) when 𝑘 = 10

Merging and Memorization 16 16 Merging and Memorization

Summary 1

 Branch & Merge in ~ 𝑂∗(2n) time and polynomial space

 Can be generalized to other problems: branch smartly

 Work done together with:

 Federico Della Croce

 Vincent T’Kindt

 Michele Garraffa

Merging and Memorization 17 17 Merging and Memorization

In Practice

 BB2001: Szwarc et al. 2001
 Solved 500 jobs in 2001 (900 jobs today!)

 Split: decompose by precedence relations

 PosElim: eliminates bad branching positions

 Memorization: avoids solving a problem twice by storing its solution

 (basically merging without moving nodes)

 Without Split, PosElim
 Branch & Merge is clearly more efficient than Branch & Reduce

 With Split, PosElim
 Split & PosElim: break the structure of merging

 Memorization is more practical, even though theoretically
exponential space.

Merging and Memorization 18 18 Merging and Memorization

In Practice: Memorization

 « Never solve a problem twice »

Merging and Memorization 19 19 Merging and Memorization

In Practice: Memorization

 « Never solve a problem twice »

Merging and Memorization 20 20 Merging and Memorization

In Practice: Memorization

 « Never solve a problem twice »

Merging and Memorization 21 21 Merging and Memorization

The power of Memorization

 BB2001 of Szwarc et al. has no LB procedure:

 Paradox (Szwarc et al. 2001): removal of LB evaluation drastically
accelerate the solution.

 => cut a sub-problem many times by computing LB is slower than
solving it once and memorize the solution

 Can be further boosted!

Merging and Memorization 22 22 Merging and Memorization

Enhanced Paradox

 Enhanced Paradox (our work)

 Removing Split from BB2001 drastically accelerate the solution

 Split : decompose the problem by precedence relations

 But…the memory is filled quickly (solve up to 700 jobs)

Merging and Memorization 23 23 Merging and Memorization

Memory Analysis

 Are all memorized solutions useful ?

Merging and Memorization 24 24 Merging and Memorization

Memory Analysis

 Are all memorized solutions useful ?

Merging and Memorization 25 25 Merging and Memorization

Memory Cleaning Strategies

 LUFO (Least Used First Out)
 Attach a counter (nbUsed) to each solution

 When a solution is used: nbUsed=nbUsed+1

 Memory full: nbUsed=nbUsed-1 for all solution, remove a
solution if its nbUsed<0

 Also tested:

 FIFO (First In First Out)

 BEFO (Biggest Entry First Out)

Merging and Memorization 26 26 Merging and Memorization

Summary 2

 An enhanced paradox for 1||∑𝑇𝑖

 An efficient memory cleaning strategy: LUFO

 Solve instances with up to 1200 jobs (from 900)

 Work done together with:

 Federico Della Croce

 Vincent T’Kindt

Merging and Memorization 27 27 Merging and Memorization

Further: a Branch & Memorize framework

 We have witnessed the power of Memorization

 Can be applied on other problems?

 Three problems are considered: 1 𝑟𝑖 ∑𝐶𝑖 , 1 𝑑 ∑𝑤𝑖𝐶𝑖 , 𝐹2||∑𝐶𝑖

 Treated in T’Kindt et al. (2004).

 Different search strategies are revisited

 The so-called DP property is implemented

o Consider two nodes: 123{4,..,n} vs 132{4,..,n}

o If 123 dominates 132, then the second node should be cut

o Use memory to store the prefixed part

Merging and Memorization 28 28 Merging and Memorization

Further: a Branch & Memorize framework

A framework: different ways of doing Memorization:

 Solution Memorization (1||∑𝑇𝑖)

 Depth-first

Merging and Memorization 29 29 Merging and Memorization

Further: a Branch & Memorize framework

A framework: different ways of doing Memorization:

 Passive Node Memorization

 Memorize the current best solution

 for the fixed part given by branching

 Used for cutting

 Consider 𝜎′ dominates 𝜎 and 𝜎′′

 (breadth-first)

Merging and Memorization 30 30 Merging and Memorization

Further: a Branch & Memorize framework

Different ways of doing
Memorization:

 Predictive Node Memorization
 Memorize the current best solution

for the fixed part given by active
search

 Passive Node Memo + Local search
o Dominance Rules Relying on

Scheduled Jobs (Jouglet et al. 2004)

 Used for cutting

 Consider 𝜋 dominates 𝜎 and 𝜎′′

Merging and Memorization 31 31 Merging and Memorization

Choose the right Memo scheme

Given a branching algorithm, choose a Memorization scheme

 Branching scheme

 Search strategy

 Other properties: whether « Decomposable »…

Merging and Memorization 32 32 Merging and Memorization

Choose the right Memo scheme

Merging and Memorization 33 33 Merging and Memorization

Further: a Branch & Memorize framework

 The evidence of the power of memorization

Merging and Memorization 34 34 Merging and Memorization

Conclusion

 Part 3: work done together with:

 Federico Della Croce

 Vincent T’Kindt

 For theoretical guarantee: branch smartly and Merge !

 For practical efficiency: Branch & Memorize

 Memorization is a powerful technique for scheduling problems

 Should be considered as an essential building block of branching
algorithms

 The choice of branching scheme and search strategy are important

Branch & Memorize Summary 3

Merging and Memorization 35 35 Merging and Memorization

Conclusion

Merging and Memorization 36 36 Merging and Memorization

