

Merging and Memorization in search trees : on the exact solution of scheduling problems

Lei Shang (PhD Student) Pr. Vincent T'Kindt (Director)

Université François Rabelais Tours Laboratoire d'Informatique (EA 6300) Equipe ROOT (CNRS ERL 6305)

Outline

- 1. Problem: $1||\sum T_i$
- 2. Branch & Merge (theoretical guarantee)
- 3. Memorization (practical efficiency)
- 4. Extension : Branch & Memorize framework on sequencing problems

Problem: $1||\sum T_i|$

- Jobset S, single machine, p_j =processing time, d_j =due date
- Objective: minimize the total tardiness $\sum_j \max(0, C_j d_j)$
- NP-hard (ordinary sense)
- In theory (complexity):
 - Brute force O(n!)
 - Dynamic programming: $O^*(2^n)$ in time and space
 - Divide & Conquer: $O^*(4^n)$, polynomial space (Gurevich et al., 1987)
 - Branch & Reduce: $O^*(3^n)$, polynomial space (F. D. Croce et al, 2015)
 - Branch & Merge => $O^*((2 + \epsilon)^n)$ in time and polynomial space
- In practice:
 - The B&B of Szwarc et al. => 500 jobs in 2001. (900 jobs today!)
 - Memorization => 1200 jobs.

In Theory

Objective

• Exact algorithms with worst-case running time/space guarantee ($O^*(c^n)$, with c a constant as small as possible)

Notation

- LPT (Longest Processing Time first) job sequence: (1,2,..,n)
- EDD (Earliest Due Date first) job sequence: $(e_1, e_2, ..., e_n)$

In Theory

Lawler's Property (1977)

- Let job $1 = e_h$, then job 1 can only be set in position $s \ge h$
- Jobs preceding 1 are: $B_1 = \{e_1, e_2, ..., e_{h-1}, e_{h+1}, ..., e_s\}$
- Jobs following 1 are: $A_1 = \{e_{s+1}, e_{s+2}, \dots, e_n\}$

Sector Strate => Worst case: LPT=EDD

Branch & Reduce T(n-1) 1 . . . LPT=EDD \bigcirc n-1 jobs Depth-First T(1)+T(n-2)2 1 n-2 jobs 1 job ... ÷ ... n jobs Time needed: T(n) 1 T(n-2)+T(1)... n n-2 jobs 1 job ... T(n-1) 1 n-1 jobs $T(n) \le 2T(n-1) + 2T(n-2) + \dots + 2T(1) \Rightarrow T(n) = O(3^n)$

Branch & Reduce

Branch & Reduce: observations

- LPT=EDD
- Depth-First

Some sub-problems are solved repeatedly!

Branch & Reduce: observations

- LPT=EDD
- Depth-First

Some sub-problems are solved repeatedly!

Branch & Merge (left)

Branch & Merge (left)

Idea: merge identical nodes based on the fixed part

- On first k nodes, k is a constant
- Why not just cut?

Branch & Merge (left)

Idea: merge identical nodes based on the fixed part

On first k nodes, k is a constant

Branch & Merge (right)

• More complex...

Branch & Merge

• Recurrence: $T(n) \le 2T(n-1) + (5k-1)T(n-k-1) + O(p(n))$

Branch & Merge

• T(n) converges to $O^*(2^n)$. $T(n) = O^*(2.0367^n)$ when k = 10

Summary 1

- Branch & Merge in ~ $O^*(2^n)$ time and polynomial space
- Can be generalized to other problems: branch smartly
- Work done together with:
 - Federico Della Croce
 - Vincent T'Kindt
 - Michele Garraffa

In Practice

- BB2001: Szwarc et al. 2001
 - Solved 500 jobs in 2001 (900 jobs today!)
 - **Split**: decompose by precedence relations
 - **PosElim**: eliminates bad branching positions
 - Memorization: avoids solving a problem twice by storing its solution (basically merging without moving nodes)
- Without Split, PosElim
 - Branch & Merge is clearly more efficient than Branch & Reduce
- With Split, PosElim
 - Split & PosElim: break the structure of merging
- Memorization is more practical, even though theoretically exponential space.

In Practice: Memorization

• « Never solve a problem twice »

In Practice: Memorization

• « Never solve a problem twice »

In Practice: Memorization

• « Never solve a problem twice »

The power of Memorization

BB2001 of Szwarc et al. has no LB procedure:

- Paradox (Szwarc et al. 2001): removal of LB evaluation drastically accelerate the solution.
- => cut a sub-problem many times by computing LB is slower than solving it once and memorize the solution
- Can be further boosted!

Enhanced Paradox

- Enhanced Paradox (our work)
 - Removing **Split** from BB2001 drastically accelerate the solution
 - **Split** : decompose the problem by precedence relations

TMin (s)	TAvg (s)	TMax (s)	#Nodes	#Hit	#SolMem
0.0	192.81	2963.0	880268	227203	111175
0.0	8.0	114.0	3053648	899031	1262895

Table: Results for instances of size 700

But...the memory is filled quickly (solve up to 700 jobs)

Memory Analysis

• Are all memorized solutions useful ?

Memory Analysis

• Are all memorized solutions useful ?

Memory Cleaning Strategies

LUFO (Least Used First Out)

- Attach a counter (nbUsed) to each solution
- When a solution is used: nbUsed=nbUsed+1
- Memory full: nbUsed=nbUsed-1 for all solution, remove a solution if its nbUsed<0
- Also tested:
 - FIFO (First In First Out)
 - BEFO (Biggest Entry First Out)

	TMin	TAvg	TMax	#Nodes	SizeMem
FIFO-800	0.0	60.0	3144.0	16161758	1727397
BEFO-800	0.0	59.0	4828.0	6356245	2006948
LUFO-800	0.0	19.0	275.0	5408511	1354477
LUFO-1200	0.0	192.0	3763.0	28223765	1424612

Summary 2

- An enhanced paradox for $1||\sum T_i|$
- An efficient memory cleaning strategy: LUFO
- Solve instances with up to 1200 jobs (from 900)
- Work done together with:
 - Federico Della Croce
 - Vincent T'Kindt

- We have witnessed the power of Memorization
- Can be applied on other problems?
- Three problems are considered: $1|r_i|\sum C_i, 1|\tilde{d}|\sum w_i C_i, F2||\sum C_i|$
- Treated in T'Kindt et al. (2004).
 - Different search strategies are revisited
 - The so-called DP property is implemented
 - Consider two nodes: 123{4,..,n} vs 132{4,..,n}
 - $_{\odot}\,$ If 123 dominates 132, then the second node should be cut
 - Use memory to store the prefixed part

A framework: different ways of doing Memorization:

• Solution Memorization $(1||\Sigma T_i)$

Depth-first

Figure 1: Solution Memorization
Merging and Memorization

A framework: different ways of doing Memorization:

Passive Node Memorization

- Memorize the current best solution for the fixed part given by branching
- Used for cutting
- Consider σ' dominates σ and σ'' (breadth-first)

Figure 2: Passive node memorization)

Future nodes

 $A: \sigma'S$

 $C: \sigma''S$

Different ways of doing Memorization:

- Predictive Node Memorization
 - Memorize the current best solution for the fixed part given by active search
 - Passive Node Memo + Local search
 - Dominance Rules Relying on Scheduled Jobs (Jouglet et al. 2004)
 - Used for cutting
 - Consider π dominates σ and σ''

Figure 3: Predictive node memorization

Choose the right Memo scheme

Given a branching algorithm, choose a Memorization scheme

- Branching scheme
- Search strategy
- Other properties: whether « Decomposable »...

Choose the right Memo scheme

Figure 4: Decision tree for choosing the memorization scheme

• The evidence of the power of memorization

Problem	Largest instances solved		Features of the best algorithm	Best in	
FIODICIII	Without	With	with memorization	literature?	
	memorization	memorization			
$1 r \sum C$	80 jobs	130 jobs	depth first+	yes	
			predictive node memorization		
$1 \tilde{d} \sum w C$	40 jobs	130 jobs	breadth first+	yes	
$ u_i \geq w_i C_i$			passive node memorization		
$F2 \parallel \sum C$	30 jobs	40 jobs	best first+	no	
$\Gamma Z \parallel \Sigma C_i$			passive node memorization		
$1 \parallel \Sigma T$	300 jobs	1200 jobs	depth first+	yes	
			solution memorization		

Conclusion

- Part 3: work done together with:
 - Federico Della Croce
 - Vincent T'Kindt
- For theoretical guarantee: branch smartly and Merge !
- For practical efficiency: Branch & Memorize
 - Memorization is a powerful technique for scheduling problems
 - Should be considered as an essential building block of branching algorithms
 - The choice of branching scheme and search strategy are important

