
Merging and Memorization 1

Merging and Memorization in search trees :
on the exact solution of scheduling problems

 Lei Shang (PhD Student)

 Pr. Vincent T’Kindt (Director)

 Université François Rabelais Tours

Laboratoire d’Informatique (EA 6300)

Equipe ROOT (CNRS ERL 6305)

shang@univ-tours.fr

mailto:shang@univ-tours.fr
mailto:shang@univ-tours.fr
mailto:shang@univ-tours.fr

Merging and Memorization 2

Outline

1. Problem: 1||∑𝑇𝑖

2. Branch & Merge (theoretical guarantee)

3. Memorization (practical efficiency)

4. Extension : Branch & Memorize framework on
sequencing problems

Outline

Merging and Memorization 3 3 Merging and Memorization

Problem: 1||∑𝑇𝑖

 Jobset 𝑆, single machine, 𝑝𝑗=processing time, 𝑑𝑗=due date

 Objective: minimize the total tardiness ∑ max⁡(0, 𝐶𝑗 − 𝑑𝑗)𝑗

 NP-hard (ordinary sense)

 In theory (complexity):
 Brute force 𝑂(𝑛!)⁡

 Dynamic programming: 𝑂∗(2𝑛)⁡in time and space

 Divide & Conquer: 𝑂∗(4𝑛), polynomial space (Gurevich et al., 1987)

 Branch & Reduce: 𝑂∗(3𝑛), polynomial space (F. D. Croce et al, 2015)

 Branch & Merge => 𝑂∗((2 + 𝜖)𝑛)⁡in time and polynomial space

 In practice:
 The B&B of Szwarc et al. => 500 jobs in 2001. (900 jobs today!)

 Memorization => 1200 jobs.

 Divide &
Conquer:
𝑂∗(4𝑛),
polynomial
space
(Gurevich et
al., 1987)

Merging and Memorization 4 4 Merging and Memorization

In Theory

Objective

 Exact algorithms with worst-case running time/space
guarantee (𝑂∗ 𝑐𝑛 , with 𝑐⁡a constant as small as possible)

Notation

 LPT (Longest Processing Time first) job sequence: (1,2, . . , 𝑛)

 EDD (Earliest Due Date first) job sequence: (𝑒1, 𝑒2, . . , 𝑒𝑛)

 Divide &
Conquer:
𝑂∗(4𝑛),
polynomial
space
(Gurevich et
al., 1987)

 NB:
𝑂∗ exp⁡(𝑛) =
𝑂(𝑝𝑜𝑙𝑦 𝑛 ∙
exp⁡(𝑛))

Merging and Memorization 5 5 Merging and Memorization

In Theory

Lawler’s Property (1977)

 Let job 1 = 𝑒ℎ, then job 1⁡can only be set in position 𝑠 ≥ ℎ

 Jobs preceding 1 are: 𝐵1 = {𝑒1, 𝑒2, . . , 𝑒ℎ−1, 𝑒ℎ+1, . . , 𝑒𝑠}

 Jobs following 1 are: 𝐴1 = {𝑒𝑠+1, 𝑒𝑠+2, . . , 𝑒𝑛}

 => Worst case: LPT=EDD

 Divide &
Conquer:
𝑂∗(4𝑛),
polynomial
space
(Gurevich et
al., 1987)

 NB:
𝑂∗ exp⁡(𝑛) =
𝑂(𝑝𝑜𝑙𝑦 𝑛 ∙
exp⁡(𝑛))

Merging and Memorization 6 6 Merging and Memorization

Branch & Reduce

 LPT=EDD

 Depth-First

𝑇 𝑛 ≤ ⁡2⁡𝑇 𝑛-1 + ⁡2𝑇 𝑛-2 + ⋯⁡+ ⁡2⁡𝑇 1 ⇒ ⁡𝑇 𝑛 = 𝑂(3𝑛)

Merging and Memorization 7 7 Merging and Memorization

Branch & Reduce

 LPT=EDD

 Notation

Merging and Memorization 8 8 Merging and Memorization

Branch & Reduce: observations

 LPT=EDD

 Depth-First

 Some sub-problems are solved repeatedly!

Merging and Memorization 9 9 Merging and Memorization

 LPT=EDD

 Depth-First

 Some sub-problems are solved repeatedly!

Branch & Reduce: observations

Merging and Memorization 10 10 Merging and Memorization

Branch & Merge (left)

 Idea: merge nodes based on the
fixed part

 Solve sub-problem {2,3} (e.g. 32)

 Compare 321 and 132

 Cannot apply on all pairs

Merging and Memorization 11 11 Merging and Memorization

Branch & Merge (left)

 Idea: merge identical nodes based on the fixed part

 On first k nodes, k is a constant

 Why not just cut?

Merging and Memorization 12 12 Merging and Memorization

Branch & Merge (left)

 Idea: merge identical nodes based on the fixed part

 On first k nodes, k is a constant

 Transitivity

 General case

Merging and Memorization 13 13 Merging and Memorization

Branch & Merge (right)

 More complex…

Merging and Memorization 14 14 Merging and Memorization

Branch & Merge

 Recurrence: 𝑇 𝑛 ≤ 2𝑇 𝑛 − 1 + 5𝑘 − 1 𝑇 𝑛 − 𝑘 − 1 + 𝑂(𝑝 𝑛)

Merging and Memorization 15 15 Merging and Memorization

Branch & Merge

 𝑇 𝑛 converges to O∗(2n). 𝑇 𝑛 = 𝑂∗(2.0367𝑛) when 𝑘 = 10

Merging and Memorization 16 16 Merging and Memorization

Summary 1

 Branch & Merge in ~ ⁡𝑂∗(2n) time and polynomial space

 Can be generalized to other problems: branch smartly

 Work done together with:

 Federico Della Croce

 Vincent T’Kindt

 Michele Garraffa

Merging and Memorization 17 17 Merging and Memorization

In Practice

 BB2001: Szwarc et al. 2001
 Solved 500 jobs in 2001 (900 jobs today!)

 Split: decompose by precedence relations

 PosElim: eliminates bad branching positions

 Memorization: avoids solving a problem twice by storing its solution

 (basically merging without moving nodes)

 Without Split, PosElim
 Branch & Merge is clearly more efficient than Branch & Reduce

 With Split, PosElim
 Split & PosElim: break the structure of merging

 Memorization is more practical, even though theoretically
exponential space.

Merging and Memorization 18 18 Merging and Memorization

In Practice: Memorization

 « Never solve a problem twice »

Merging and Memorization 19 19 Merging and Memorization

In Practice: Memorization

 « Never solve a problem twice »

Merging and Memorization 20 20 Merging and Memorization

In Practice: Memorization

 « Never solve a problem twice »

Merging and Memorization 21 21 Merging and Memorization

The power of Memorization

 BB2001 of Szwarc et al. has no LB procedure:

 Paradox (Szwarc et al. 2001): removal of LB evaluation drastically
accelerate the solution.

 => cut a sub-problem many times by computing LB is slower than
solving it once and memorize the solution

 Can be further boosted!

Merging and Memorization 22 22 Merging and Memorization

Enhanced Paradox

 Enhanced Paradox (our work)

 Removing Split from BB2001 drastically accelerate the solution

 Split : decompose the problem by precedence relations

 But…the memory is filled quickly (solve up to 700 jobs)

Merging and Memorization 23 23 Merging and Memorization

Memory Analysis

 Are all memorized solutions useful ?

Merging and Memorization 24 24 Merging and Memorization

Memory Analysis

 Are all memorized solutions useful ?

Merging and Memorization 25 25 Merging and Memorization

Memory Cleaning Strategies

 LUFO (Least Used First Out)
 Attach a counter (nbUsed) to each solution

 When a solution is used: nbUsed=nbUsed+1

 Memory full: nbUsed=nbUsed-1 for all solution, remove a
solution if its nbUsed<0

 Also tested:

 FIFO (First In First Out)

 BEFO (Biggest Entry First Out)

Merging and Memorization 26 26 Merging and Memorization

Summary 2

 An enhanced paradox for 1||∑𝑇𝑖

 An efficient memory cleaning strategy: LUFO

 Solve instances with up to 1200 jobs (from 900)

 Work done together with:

 Federico Della Croce

 Vincent T’Kindt

Merging and Memorization 27 27 Merging and Memorization

Further: a Branch & Memorize framework

 We have witnessed the power of Memorization

 Can be applied on other problems?

 Three problems are considered: 1 𝑟𝑖 ∑𝐶𝑖 , 1 𝑑 ∑𝑤𝑖𝐶𝑖 , 𝐹2||∑𝐶𝑖

 Treated in T’Kindt et al. (2004).

 Different search strategies are revisited

 The so-called DP property is implemented

o Consider two nodes: 123{4,..,n} vs 132{4,..,n}

o If 123 dominates 132, then the second node should be cut

o Use memory to store the prefixed part

Merging and Memorization 28 28 Merging and Memorization

Further: a Branch & Memorize framework

A framework: different ways of doing Memorization:

 Solution Memorization (1||∑𝑇𝑖)

 Depth-first

Merging and Memorization 29 29 Merging and Memorization

Further: a Branch & Memorize framework

A framework: different ways of doing Memorization:

 Passive Node Memorization

 Memorize the current best solution

 for the fixed part given by branching

 Used for cutting

 Consider 𝜎′ dominates 𝜎 and 𝜎′′

 (breadth-first)

Merging and Memorization 30 30 Merging and Memorization

Further: a Branch & Memorize framework

Different ways of doing
Memorization:

 Predictive Node Memorization
 Memorize the current best solution

for the fixed part given by active
search

 Passive Node Memo + Local search
o Dominance Rules Relying on

Scheduled Jobs (Jouglet et al. 2004)

 Used for cutting

 Consider 𝜋 dominates 𝜎 and 𝜎′′

Merging and Memorization 31 31 Merging and Memorization

Choose the right Memo scheme

Given a branching algorithm, choose a Memorization scheme

 Branching scheme

 Search strategy

 Other properties: whether « Decomposable »…

Merging and Memorization 32 32 Merging and Memorization

Choose the right Memo scheme

Merging and Memorization 33 33 Merging and Memorization

Further: a Branch & Memorize framework

 The evidence of the power of memorization

Merging and Memorization 34 34 Merging and Memorization

Conclusion

 Part 3: work done together with:

 Federico Della Croce

 Vincent T’Kindt

 For theoretical guarantee: branch smartly and Merge !

 For practical efficiency: Branch & Memorize

 Memorization is a powerful technique for scheduling problems

 Should be considered as an essential building block of branching
algorithms

 The choice of branching scheme and search strategy are important

Branch & Memorize  Summary 3

Merging and Memorization 35 35 Merging and Memorization

Conclusion

Merging and Memorization 36 36 Merging and Memorization

