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Outline 

1. Problem: 1||∑𝑇𝑖 

2. Branch & Merge (theoretical guarantee) 

3. Memorization (practical efficiency) 

4. Extension : Branch & Memorize framework on 
sequencing problems 

Outline 
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Problem: 1||∑𝑇𝑖  

 Jobset 𝑆, single machine, 𝑝𝑗=processing time, 𝑑𝑗=due date 

 Objective: minimize the total tardiness ∑ max(0, 𝐶𝑗 − 𝑑𝑗)𝑗  

 NP-hard (ordinary sense) 

 In theory (complexity): 
 Brute force 𝑂(𝑛!) 

 Dynamic programming: 𝑂∗(2𝑛)in time and space 

 Divide & Conquer: 𝑂∗(4𝑛), polynomial space (Gurevich et al., 1987) 

 Branch & Reduce: 𝑂∗(3𝑛), polynomial space (F. D. Croce et al, 2015)  

 Branch & Merge => 𝑂∗((2 + 𝜖)𝑛)in time and polynomial space 

 

 In practice: 
 The B&B of Szwarc et al. => 500 jobs in 2001. (900 jobs today!) 

 Memorization => 1200 jobs. 
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𝑂∗(4𝑛), 
polynomial 
space 
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In Theory 

Objective 

 Exact algorithms with worst-case running time/space 
guarantee (𝑂∗ 𝑐𝑛 , with 𝑐a constant as small as possible) 

 

Notation 

 LPT (Longest Processing Time first) job sequence: (1,2, . . , 𝑛) 

 EDD (Earliest Due Date first) job sequence: (𝑒1, 𝑒2, . . , 𝑒𝑛) 

 

 

 

 

 Divide & 
Conquer: 
𝑂∗(4𝑛), 
polynomial 
space 
(Gurevich et 
al., 1987) 

 NB: 
𝑂∗ exp(𝑛) =
𝑂(𝑝𝑜𝑙𝑦 𝑛 ∙
exp(𝑛))  
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In Theory 

Lawler’s Property (1977) 

 Let job 1 = 𝑒ℎ, then job 1can only be set in position 𝑠 ≥ ℎ  

 Jobs preceding 1 are: 𝐵1 = {𝑒1, 𝑒2, . . , 𝑒ℎ−1, 𝑒ℎ+1, . . , 𝑒𝑠} 

 Jobs following 1 are: 𝐴1 = {𝑒𝑠+1, 𝑒𝑠+2, . . , 𝑒𝑛} 

 

 

 

 

 => Worst case: LPT=EDD  
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Branch & Reduce 

 LPT=EDD 

 Depth-First 

𝑇 𝑛 ≤ 2𝑇 𝑛-1 + 2𝑇 𝑛-2 + ⋯+ 2𝑇 1 ⇒ 𝑇 𝑛 = 𝑂(3𝑛) 
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Branch & Reduce 

 LPT=EDD 

 Notation 
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Branch & Reduce: observations 

 LPT=EDD 

 Depth-First 

 

 

 

 

 

 

 

 

 

 Some sub-problems are solved repeatedly! 
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 LPT=EDD 

 Depth-First 

 

 

 

 

 

 

 

 

 

 Some sub-problems are solved repeatedly! 

Branch & Reduce: observations 
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Branch & Merge (left) 

 Idea: merge nodes based on the 
fixed part 

 Solve sub-problem {2,3} (e.g. 32) 

 Compare 321 and 132 

 Cannot apply on all pairs 
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Branch & Merge (left) 

 Idea: merge identical nodes based on the fixed part 

 On first k nodes, k is a constant 

 Why not just cut? 
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Branch & Merge (left) 

 Idea: merge identical nodes based on the fixed part 

 On first k nodes, k is a constant 

 Transitivity 

 General case 
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Branch & Merge (right) 

 More complex… 
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Branch & Merge 

 Recurrence: 𝑇 𝑛 ≤ 2𝑇 𝑛 − 1 + 5𝑘 − 1 𝑇 𝑛 − 𝑘 − 1 + 𝑂(𝑝 𝑛 ) 
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Branch & Merge 

 𝑇 𝑛  converges to O∗(2n). 𝑇 𝑛 = 𝑂∗(2.0367𝑛) when 𝑘 = 10 
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Summary 1 

 Branch & Merge in ~ 𝑂∗(2n)  time and polynomial space 

 Can be generalized to other problems: branch smartly 

 Work done together with: 

 Federico Della Croce  

 Vincent T’Kindt 

 Michele Garraffa 
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In Practice 

 BB2001: Szwarc et al. 2001 
 Solved 500 jobs in 2001 (900 jobs today!) 

 Split: decompose by precedence relations 

 PosElim: eliminates bad branching positions 

 Memorization: avoids solving a problem twice by storing its solution 

                             (basically merging without moving nodes) 

 Without Split, PosElim 
 Branch & Merge is clearly more efficient than Branch & Reduce  

 With Split, PosElim  
 Split & PosElim: break the structure of merging 

 Memorization is more practical, even though theoretically 
exponential space.  



Merging and Memorization 18 18 Merging and Memorization 

In Practice: Memorization 

 « Never solve a problem twice » 
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In Practice: Memorization 

 « Never solve a problem twice » 
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In Practice: Memorization 

 « Never solve a problem twice » 
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The power of Memorization 

 BB2001 of Szwarc et al. has no LB procedure: 

 Paradox (Szwarc et al. 2001): removal of LB evaluation drastically 
accelerate the solution. 

 => cut a sub-problem many times by computing LB is slower than 
solving it once and memorize the solution 

 

 Can be further boosted! 
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Enhanced Paradox 

 Enhanced Paradox (our work) 

 Removing Split from BB2001 drastically accelerate the solution 

 Split : decompose the problem by precedence relations 

 

 

 

 

 

 

 

 But…the memory is filled quickly (solve up to 700 jobs) 
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Memory Analysis 

 Are all memorized solutions useful ? 

 

 

 

 

 

 

 



Merging and Memorization 24 24 Merging and Memorization 

Memory Analysis 

 Are all memorized solutions useful ? 
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Memory Cleaning Strategies 

 LUFO (Least Used First Out) 
 Attach a counter (nbUsed) to each solution 

 When a solution is used: nbUsed=nbUsed+1 

 Memory full: nbUsed=nbUsed-1 for all solution, remove a 
solution if its nbUsed<0 

 Also tested: 

 FIFO (First In First Out) 

 BEFO (Biggest Entry First Out) 
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Summary 2 

 An enhanced paradox for 1||∑𝑇𝑖 

 An efficient memory cleaning strategy: LUFO 

 Solve instances with up to 1200 jobs (from 900) 

 Work done together with: 

 Federico Della Croce  

 Vincent T’Kindt 
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Further: a Branch & Memorize framework 

 We have witnessed the power of Memorization 

 Can be applied on other problems? 

 Three problems are considered: 1 𝑟𝑖 ∑𝐶𝑖 , 1 𝑑 ∑𝑤𝑖𝐶𝑖 , 𝐹2||∑𝐶𝑖 

 Treated in T’Kindt et al. (2004).  

 Different search strategies are revisited 

 The so-called DP property is implemented 

o Consider two nodes: 123{4,..,n}  vs  132{4,..,n} 

o If 123 dominates 132, then the second node should be cut 

o Use memory to store the prefixed part 
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Further: a Branch & Memorize framework 

A framework: different ways of doing Memorization: 

 Solution Memorization (1||∑𝑇𝑖) 

 Depth-first 
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Further: a Branch & Memorize framework 

A framework: different ways of doing Memorization: 

 Passive Node Memorization 

 Memorize the current best solution  

    for the fixed part given by branching 

 Used for cutting 

 Consider 𝜎′ dominates 𝜎 and 𝜎′′ 

 (breadth-first) 
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Further: a Branch & Memorize framework 

Different ways of doing 
Memorization: 

 Predictive Node Memorization 
 Memorize the current best solution 

for the fixed part given by active 
search 

 Passive Node Memo + Local search 
o Dominance Rules Relying on 

Scheduled Jobs (Jouglet et al. 2004) 

 Used for cutting 

 Consider 𝜋 dominates 𝜎 and 𝜎′′ 
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Choose the right Memo scheme 

Given a branching algorithm, choose a Memorization scheme 

 Branching scheme 

 Search strategy 

 Other properties: whether « Decomposable »… 
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Choose the right Memo scheme 
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Further: a Branch & Memorize framework 

 The evidence of the power of memorization 
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Conclusion 

 Part 3: work done together with: 

 Federico Della Croce  

 Vincent T’Kindt 

 

 For theoretical guarantee: branch smartly and Merge ! 

 For practical efficiency: Branch & Memorize 

 Memorization is a powerful technique for scheduling problems 

 Should be considered as an essential building block of branching 
algorithms 

 The choice of branching scheme and search strategy are important 

 

 

Branch & Memorize  Summary 3 
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Conclusion 
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