Merging and Memorization in search trees : on the exact solution of scheduling problems

Lei Shang (PhD Student)
Pr. Vincent T’Kindt (Director)

Université François Rabelais Tours
Laboratoire d'Informatique (EA 6300)
Equipe ROOT (CNRS ERL 6305)

Outline

1. Problem: $1\left|\mid \sum T_{i}\right.$
2. Branch \& Merge (theoretical guarantee)
3. Memorization (practical efficiency)
4. Extension : Branch \& Memorize framework on sequencing problems

Problem: $1\left|\mid \sum T_{i}\right.$

(3) Jobset S, single machine, $p_{j}=$ processing time, $d_{j}=$ due date
(Objective: minimize the total tardiness $\sum_{j} \max \left(0, C_{j}-d_{j}\right)$

- NP-hard (ordinary sense)
- In theory (complexity):
- Brute force O (n !)
- Dynamic programming: $O^{*}\left(2^{n}\right)$ in time and space
- Divide \& Conquer: $O^{*}\left(4^{n}\right)$, polynomial space (Gurevich et al., 1987)
- Branch \& Reduce: $O^{*}\left(3^{n}\right)$, polynomial space (F. D. Croce et al, 2015)
- Branch \& Merge $=>O^{*}\left((2+\epsilon)^{n}\right)$ in time and polynomial space
- In practice:
- The B\&B of Szwarc et al. => 500 jobs in 2001. (900 jobs today!)
- Memorization => 1200 jobs.

In Theory

Objective

- Exact algorithms with worst-case running time/space guarantee ($O^{*}\left(c^{n}\right)$, with c a constant as small as possible)

Notation

- LPT (Longest Processing Time first) job sequence: $(1,2, . ., n)$
- EDD (Earliest Due Date first) job sequence: $\left(e_{1}, e_{2}, . ., e_{n}\right)$

In Theory

Lawler's Property (1977)

- Let job $1=e_{h}$, then job 1 can only be set in position $s \geq h$
- Jobs preceding 1 are: $B_{1}=\left\{e_{1}, e_{2}, \ldots, e_{h-1}, e_{h+1}, \ldots, e_{s}\right\}$
- Jobs following 1 are: $A_{1}=\left\{e_{s+1}, e_{s+2}, \ldots, e_{n}\right\}$

- => Worst case: LPT=EDD

Branch \& Reduce

\author{

- LPT=EDD
 - Depth-First
}

$$
T(n) \leq 2 T(n-1)+2 T(n-2)+\cdots+2 T(1) \Rightarrow T(n)=O\left(3^{n}\right)
$$

Branch \& Reduce

(4) LPT=EDD

- Notation

$$
P:\{1, \ldots, n\}
$$

Branch \& Reduce: observations

(1) LPT=EDD
(3) Depth-First

- Some sub-problems are solved repeatedly!

Branch \& Reduce: observations

(1) LPT=EDD

- Depth-First

(1) Some sub-problems are solved repeatedly!

Branch \& Merge (left)

- Idea: merge nodes based on the fixed part
- Solve sub-problem $\{2,3\}$ (e.g. 32)
- Compare 321 and 132
- Cannot apply on all pairs

Branch \& Merge (left)

- Idea: merge identical nodes based on the fixed part
- On first k nodes, k is a constant
- Why not just cut?

$$
P:\{1, \ldots, n\}
$$

Branch \& Merge (left)

- Idea: merge identical nodes based on the fixed part
- On first k nodes, k is a constant
- Transitivity

$$
P:\{1, \ldots, n\}
$$

- General case

Branch \& Merge (right)

© More complex...

Branch \& Merge

$\underbrace{}_{T(n-1)}$

- Recurrence: $T(n) \leq 2 T(n-1)+(5 k-1) T(n-k-1)+O(p(n))$

Branch \& Merge

(2. $T(n)$ converges to $0^{*}\left(2^{\mathrm{n}}\right) \cdot T(n)=O^{*}\left(2.0367^{n}\right)$ when $k=10$

k	$T(n)$
5	$\mathcal{O}^{*}\left(2.3065^{n}\right)$
10	$\mathcal{O}^{*}\left(2.0367^{n}\right)$
15	$\mathcal{O}^{*}\left(2.0022^{n}\right)$
20	$\mathcal{O}^{*}\left(2.0001^{n}\right)$

Summary 1

(3) Branch \& Merge in $\sim O^{*}\left(2^{\mathrm{n}}\right)$ time and polynomial space

- Can be generalized to other problems: branch smartly
- Work done together with:
- Federico Della Croce
- Vincent T'Kindt
- Michele Garraffa

In Practice

a BB2001: Szwarc et al. 2001

- Solved 500 jobs in 2001 (900 jobs today!)
- Split: decompose by precedence relations
- PosElim: eliminates bad branching positions
- Memorization: avoids solving a problem twice by storing its solution (basically merging without moving nodes)
(3) Without Split, PosElim
- Branch \& Merge is clearly more efficient than Branch \& Reduce
- With Split, PosElim
- Split \& PosElim: break the structure of merging
- Memorization is more practical, even though theoretically exponential space.

In Practice: Memorization

© «Never solve a problem twice»

In Practice: Memorization

© «Never solve a problem twice»

In Practice: Memorization

© «Never solve a problem twice»

The power of Memorization

- BB2001 of Szwarc et al. has no LB procedure:
- Paradox (Szwarc et al. 2001): removal of LB evaluation drastically accelerate the solution.
- => cut a sub-problem many times by computing LB is slower than solving it once and memorize the solution
© Can be further boosted!

Enhanced Paradox

© Enhanced Paradox (our work)

- Removing Split from BB2001 drastically accelerate the solution
- Split : decompose the problem by precedence relations

TMin (s)	TAvg (s)	TMax (s)	\#Nodes	\#Hit	\#SolMem
0.0	192.81	2963.0	880268	227203	111175
0.0	8.0	114.0	3053648	899031	1262895

Table: Results for instances of size 700

ब But...the memory is filled quickly (solve up to 700 jobs)

Memory Analysis

© Are all memorized solutions useful ?

Memory Analysis

© Are all memorized solutions useful ?

Memory Cleaning Strategies

- LUFO (Least Used First Out)
- Attach a counter (nbUsed) to each solution
- When a solution is used: nbUsed=nbUsed+1
- Memory full: nbUsed=nbUsed-1 for all solution, remove a solution if its nbused<0
- Also tested:
- FIFO (First In First Out)
- BEFO (Biggest Entry First Out)

	TMin	TAvg	TMax	\#Nodes	SizeMem
FIFO-800	0.0	60.0	3144.0	16161758	1727397
BEFO-800	0.0	59.0	4828.0	6356245	2006948
LUFO-800	0.0	19.0	275.0	5408511	1354477
LUFO-1200	0.0	192.0	3763.0	28223765	1424612

Summary 2

(9) An enhanced paradox for $1\left|\mid \sum T_{i}\right.$

- An efficient memory cleaning strategy: LUFO
(Solve instances with up to 1200 jobs (from 900)
(2) Work done together with:
- Federico Della Croce
- Vincent T’Kindt

Further: a Branch \& Memorize framework

- We have witnessed the power of Memorization
- Can be applied on other problems?
- Three problems are considered: $1\left|r_{i}\right| \sum C_{i}, 1|\tilde{d}| \sum w_{i} C_{i}, F 2| | \sum C_{i}$
© Treated in T'Kindt et al. (2004).
- Different search strategies are revisited
- The so-called DP property is implemented
- Consider two nodes: 123\{4,..,n\} vs 132\{4,..,n\}
- If 123 dominates 132 , then the second node should be cut
- Use memory to store the prefixed part

Further: a Branch \& Memorize framework

A framework: different ways of doing Memorization:
© Solution Memorization (1|| T_{i})

- Depth-first

Further: a Branch \& Memorize framework

A framework: different ways of doing Memorization:

- Passive Node Memorization
- Memorize the current best solution for the fixed part given by branching
- Used for cutting
- Consider σ^{\prime} dominates σ and $\sigma^{\prime \prime}$ (breadth-first)

Figure 2: Passive node memorization)

Further: a Branch \& Memorize framework

Different ways of doing Memorization:

- Predictive Node Memorization

- Memorize the current best solution for the fixed part given by active search
- Passive Node Memo + Local search
- Dominance Rules Relying on Scheduled Jobs (Jouglet et al. 2004)
- Used for cutting
- Consider π dominates σ and $\sigma^{\prime \prime}$

Figure 3: Predictive node memorization

Choose the right Memo scheme

Given a branching algorithm, choose a Memorization scheme

- Branching scheme
- Search strategy
© Other properties: whether « Decomposable »...

Choose the right Memo scheme

Figure 4: Decision tree for choosing the memorization scheme

Further: a Branch \& Memorize framework

© The evidence of the power of memorization

Problem	Largest instances solved		Features of the best algorithm	Best in	
	Without memorization memorization	With memorization	literature?		
$1\left\|r_{i}\right\| \sum C_{i}$	80 jobs	130 jobs	depth first+ predictive node memorization	yes	
$1\left\|\tilde{d}_{i}\right\| \sum w_{i} C_{i}$	40 jobs	130 jobs	breadth first + passive node memorization	yes	
$F 2 \\| \sum C_{i}$	30 jobs	40 jobs	best first+ passive node memorization	no	
$1 \\| \sum T_{i}$	300 jobs	1200 jobs	depth first+ solution memorization	yes	

Conclusion

(2) Part 3: work done together with:

- Federico Della Croce
- Vincent T'Kindt
© For theoretical guarantee: branch smartly and Merge!
- For practical efficiency: Branch \& Memorize
- Memorization is a powerful technique for scheduling problems
- Should be considered as an essential building block of branching algorithms
- The choice of branching scheme and search strategy are important

