A Branch-and-Cut-and-Price algorithm for a large class of parallel machine scheduling problems

Teobaldo Bulhões² Ruslan Sadykov¹ Eduardo Uchoa²
Anand Subramanian³

₁ Inria Bordeaux and Univ. Bordeaux, France
₂ Univ. Federal Fluminense, Brazil
₃ Univ. Federal da Paraíba, Brazil

Journées GOTHa/Bermudes
Tours, September 26, 2017
Contents

Introduction

Set covering formulation and Branch-and-Price

Subset-row cuts

Computational results
The scheduling problem we want to solve

- Set M of unrelated machines
- n jobs, each job $j \in J = \{1, \ldots, n\}$ has
 - processing time p^k_j, dependent on the machine
 - release and due dates r_j and d_j
 - earliness and tardiness unitary penalties α_j and β_j
- Given completion time C_j of job $j \in J$ in the schedule, its cost is
 \[
 \alpha_j E_j + \beta_j T_j = \alpha_j \cdot \max\{0, d_j - C_j\} + \beta_j \cdot \max\{0, C_j - d_j\}
 \]
- There is a sequence-dependent setup time $s_{i,j}^k$ if job j is scheduled immediately after job i on machine k.
- The objective is to minimize the total earliness/tardiness cost.
- Problem’s notation:
 \[
 R|r_j, s_{i,j}^k| \sum_j \alpha_j E_j + \beta_j T_j
 \]
Heterogeneous Vehicle Routing with Time Windows

Set I of customers, each $i \in I$ with demand d_i, service time s_i and time window $[r_i, d_i]$.

Set M of vehicle types, each $k \in M$ with a depot $i_{|I|+k}$ with U_k vehicles of capacity Q_k, with fixed cost f_u, travel costs c_{ij}^k and travel distances d_{ij}^k for each pair $(i, j) \in I \cup M$ of customers/depots.

Objective: minimize the total fixed and travel cost.
Similarities between problems

<table>
<thead>
<tr>
<th>HVRP</th>
<th>UMSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterogeneous vehicles</td>
<td>Unrelated machines</td>
</tr>
<tr>
<td>Vehicle routes</td>
<td>Machine schedules</td>
</tr>
<tr>
<td>Capacity resource</td>
<td>One job at a time</td>
</tr>
<tr>
<td>Time resource</td>
<td>Time resource</td>
</tr>
<tr>
<td>Service times</td>
<td>Job processing times</td>
</tr>
<tr>
<td>Distances between customers</td>
<td>Setup times</td>
</tr>
<tr>
<td>Minimizing vehicle cost and total travelled distance</td>
<td>Minimizing “just-in-time” penalty (sort of “soft” time windows)</td>
</tr>
</tbody>
</table>
State-of-the-art exact algorithms for Vehicle Routing

Instances with 100–150 customers are routinely solved to optimality

Existing exact approaches in the literature for scheduling on parallel machines with sum criteria

<table>
<thead>
<tr>
<th>Problem Type</th>
<th>Constraints</th>
<th>Formulations</th>
<th>Machines</th>
<th>Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R</td>
<td>s_{ij}^k</td>
<td>\sum \alpha_j E_j + \beta_j T_j$</td>
<td>Only MIP formulations, up to 5 machines and 12 jobs.</td>
<td>5</td>
</tr>
<tr>
<td>$R</td>
<td></td>
<td>\sum T_j$</td>
<td>A branch-and-bound [Shim and Kim, 2007], up to 5 machines and 20 jobs.</td>
<td>5</td>
</tr>
<tr>
<td>$R</td>
<td></td>
<td>\sum w_j T_j$</td>
<td>A branch-and-bound [Liaw et al., 2003], up to 4 machines and 18 jobs.</td>
<td>4</td>
</tr>
<tr>
<td>$Q</td>
<td>s_{ij}^k</td>
<td>\sum E_j + T_j$</td>
<td>A MIP and a Benders decomposition [Balakrishnan et al., 1999], up to 20 jobs.</td>
<td>5</td>
</tr>
<tr>
<td>$P</td>
<td>s_f</td>
<td>\sum T_j$</td>
<td>A branch-and-bound [Schaller, 2014], up to 3 machines and 14 jobs.</td>
<td>3</td>
</tr>
<tr>
<td>$P</td>
<td>r_j</td>
<td>\sum w_j T_j$</td>
<td>A branch-and-bound [Jouglet and Savourey, 2011], up to 5 machines and 20 jobs</td>
<td>5</td>
</tr>
<tr>
<td>$P</td>
<td></td>
<td>\sum w_j T_j$</td>
<td>A Branch-Cut-and-Price [Pessoa et al., 2010], up to 4 machines and 100 jobs.</td>
<td>4</td>
</tr>
<tr>
<td>$R</td>
<td>a_k, r_j, s_{ij}^k</td>
<td>\sum w_j T_j$</td>
<td>A branch-and-price [Lopes and de Carvalho, 2007], up to 50 machines and 150 jobs</td>
<td>50</td>
</tr>
</tbody>
</table>
Set covering (master) formulation

- \(\Omega_k \) — set of pseudo-schedules for machine \(k \in M \)
- \(a^\omega_j \) — number of times that job \(j \) appears in pseudo-schedule \(\omega \).
- \(c_\omega \) — cost of pseudo-schedule \(\omega \).
- **Binary variable** \(\lambda^\omega_k = 1 \) if and only if pseudo-schedule \(\omega \) is assigned to machine \(k \in M \)

\[
\min \sum_{k \in M} \sum_{\omega \in \Omega_u} c_\omega \lambda_s \\
\sum_{k \in M} \sum_{\omega \in \Omega_u} a^\omega_j \lambda^\omega = 1, \quad \forall j \in J, \\
\sum_{\omega \in \Omega_k} \lambda^\omega \leq 1, \quad \forall k \in M, \\
\lambda^\omega \in \{0, 1\}, \quad \forall \omega \in \Omega_k, \forall k \in M.
\]
Pricing subproblem for machine \(k \in M \)

Extended graph \(G_k \)

Arc \((i, j, t)\) — setup time between job \(i \) and \(j \) is started at time \(t \), and job \(j \) is started at time \(t + s_{ij}^k \)

Variable \(x_{ij}^t \) — arc \((i, j, t)\) in the solution or not

\[
\begin{align*}
J &= \{1, 2, 3\}, \quad T = 8 , \quad p_1 = 4, \quad p_2 = 1, \quad p_3 = 3, \quad s_{ij} = 1, \quad \forall i, j \in J \\
\text{Pseudo-schedules 0-2-3-2-0 and 0-2-1-0 are shown}
\end{align*}
\]
Pricing subproblem: the labelling algorithm

Given dual solution π of the restricted master problem, the pricing subproblem is

$$\min_{\omega \in \Omega_k} \bar{c}_\omega = c_\omega - \sum_{j \in J} a^\omega_j \pi_j = \sum_{i,j \in J, i \neq j} \left(c_j^{t+s_{ij}+p_j} - \pi_j \right) \cdot x_{ij}$$

i.e. the shortest path problem in the extended graph.

Labels
Each label $L = (\bar{c}^L, j^L, t^L)$ represents a partial pseudo-schedule. It dominates another label L' if

$$j^L = j^{L'}, t^L = t^{L'}, \bar{c}^L \leq \bar{c}^{L'}$$
The labeling algorithm

\[t = 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \]

\[5 \]
\[4 \]
\[3 \]
\[2 \]
\[1 \]

\[j = 0 \]

Initial label
The labeling algorithm

![Diagram showing label expansion over time](image)
The labeling algorithm

\[
\begin{array}{cccccc}
 t = 0 & 1 & 2 & 3 & 4 & 5 \\
 5 & & & & & \\
 4 & & & & & \\
 3 & & & & & \\
 2 & & & & & \\
 1 & & & & & \\
 j = 0 & & & & & \\
\end{array}
\]

label expansion
The labeling algorithm

\[t = 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \]

\[
\begin{array}{ccccccc}
5 & & & & & & \\
4 & & & & & & \\
3 & & & & & & \\
2 & & & & & & \\
1 & & & & & & \\
j = 0 & & & & & & \\
\end{array}
\]

Do both labels need to be kept in bucket (4,4)?
The labeling algorithm

The labels represent partial paths 0-1-4 and 0-3-4.
Fixing of arc variables by reduced costs

- Z_{RM} — optimal value of the current restricted master.
- Z_{sub}^k — minimum reduced cost for machine $k \in M$.
- Lagrangian lower bound: $Z_{RM} + \sum_{k \in M} Z_{sub}^k$.
- Z_{inc} — value of the best known integer solution.
- $Z_{sub}^k(a)$ — current minimum reduced cost of a path containing arc $a \in G_k$.

• Arc a can be removed (it cannot take part of any improving solution) if

$$Z_{sub}^k(a) + \sum_{k' \in M \setminus \{k\}} Z_{sub}^{k'} + Z_{RM} \geq Z_{inc}.$$

• A good heuristic is very important!
Computing $Z_{sub}^k(a)$ [Ibaraki and Nakamura, 1994]

How to compute the shortest path passing through arc $a = (i, j, t) \in G_k$?

\[Z_{sub}^k(a = (i, j, k)) = F(i, t) + B(j, t + s_{ij}^k + p_j^k) + c_{j}^{t+s_{ij}^k+p_j^k} \]

1. $F(i, t)$ — the value of the shortest path from s to node (i, t)
2. $B(k, t + s_{ij}^k + p_j^k)$ — the value of the shortest path from d to node $(j, t + s_{ij}^k + p_j^k)$

Dual price smoothing stabilization

- $\overline{\pi}$ — current dual solution of the restricted master
- π^* — dual solution giving the best Lagrangian bound so far
- We solve the pricing problem using the dual vector

$$\pi' = (1 - \alpha) \cdot \overline{\pi} + \alpha \cdot \pi^*,$$

where $\alpha \in [0, 1)$.

- Parameter α is automatically adjusted in each column generation iteration using the sub-gradient of the Lagrangian function at π' [Pessoa et al., 2017].

Branching

- Branching on aggregated arc variables

\[\sum_{0 \leq t \leq T} x_{ij}^{tk} \in \{0, 1\}, \]

i.e. job \(i \) immediately precedes job \(j \) on machine \(k \) or not

- Multi-phase strong branching is used

- Branching history is kept is used through pseudo-costs
Contents

Introduction

Set covering formulation and Branch-and-Price

Subset-row cuts

Computational results
Subset-Row Cuts (SRCs) [Jepsen et al., 2008]

Given $C \subseteq J$ and a multiplier ρ, the (C, ρ)-Subset Row Cut is:

$$\sum_{k \in M} \sum_{\omega \in \Omega_k} \left[\rho \sum_{i \in C} a_{i\omega} \right] \lambda_{\omega} \leq \lfloor \rho |C| \rfloor$$

Special case of Chvátal-Gomory rank-1 cuts obtained by rounding of $|C|$ set-packing constraints in the master

Here we use only 1-row and 3-row cuts with $\rho = \frac{1}{2}$. We separate them by enumeration.

Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows.

Impact on the pricing problem

Given dual value $\nu_\gamma < 0$ for each active subset row cut $\gamma \in \Gamma$, defined for subset C_γ of jobs, modified reduced cost of pseudo-schedule $\omega \in \Omega_k$ is:

$$
\bar{c}_\omega = \sum_{i, j \in J, t \in T} \left(c_j^t + s_{ij} + p_j - \pi_j \right) \cdot x_{ij}^t - \sum_{\gamma \in \Gamma} \left[\frac{1}{2} \cdot \sum_{j \in C_\eta, i \in J, \ i \neq j, \ t \in T} x_{ij}^t \right].
$$

Each cut adds to labels an additional binary state S_L^γ (parity of the number of times jobs in C_γ appear in the partial schedule L), resulting in a weaker domination:

$$
\bar{c}^L - \sum_{\gamma \in \Gamma: S_L^\gamma > S_{L'}^\gamma} \nu_\gamma \leq \bar{c}'^L \quad \text{instead of} \quad \bar{c}^L \leq \bar{c}'^L
$$
Limited memory cuts [Pecin et al., 2017]

For each active cut $\gamma \in \Gamma$, define a memory \mathcal{M}_γ of vertices (jobs) which “remember” state S_γ.

If $j^L \notin \mathcal{M}_\gamma$, then $S^L_\gamma \leftarrow 0$.

Vectors S^L are sparser \Rightarrow stronger domination

Contents

Introduction

Set covering formulation and Branch-and-Price

Subset-row cuts

Computational results
Results for $R | r_j, s_{ij}^k | \sum \alpha_j E_j + \beta_j T_j$, small setup times

Initial heuristic and instances by [Kramer and Subramanian, 2017]

<table>
<thead>
<tr>
<th>Size</th>
<th>With cuts</th>
<th>BKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>m</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>60/60</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>60/60</td>
</tr>
<tr>
<td>60</td>
<td>3</td>
<td>60/60</td>
</tr>
<tr>
<td>80</td>
<td>2</td>
<td>60/60</td>
</tr>
<tr>
<td>80</td>
<td>4</td>
<td>48/60</td>
</tr>
</tbody>
</table>

Size Without cuts

<table>
<thead>
<tr>
<th>Size</th>
<th>Without cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>3</td>
</tr>
</tbody>
</table>

A unified heuristic and an annotated bibliography for a large class of earliness-tardiness scheduling problems.
Technical report, Universidad Federal da Paraíba, Brazil.
Results for $R \mid r_j, s_{ij}^k \mid \sum \alpha_j E_j + \beta_j T_j$, larger setup times

Initial heuristic and instances by [Kramer and Subramanian, 2017]

<table>
<thead>
<tr>
<th>Size</th>
<th>With cuts</th>
<th>BKS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#Solved</td>
<td>Root Gap (%)</td>
<td>Gap (%)</td>
</tr>
<tr>
<td>40</td>
<td>60/60</td>
<td>0.43</td>
<td>0.00</td>
</tr>
<tr>
<td>60</td>
<td>58/60</td>
<td>2.22</td>
<td>0.06</td>
</tr>
<tr>
<td>60</td>
<td>45/60</td>
<td>4.29</td>
<td>1.21</td>
</tr>
<tr>
<td>80</td>
<td>28/60</td>
<td>2.89</td>
<td>1.32</td>
</tr>
<tr>
<td>80</td>
<td>10/60</td>
<td>5.17</td>
<td>3.91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>Without cuts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#Solved</td>
<td>Root Gap (%)</td>
</tr>
<tr>
<td>40</td>
<td>60/60</td>
<td>4.08</td>
</tr>
<tr>
<td>60</td>
<td>43/60</td>
<td>4.71</td>
</tr>
<tr>
<td>60</td>
<td>37/60</td>
<td>5.99</td>
</tr>
</tbody>
</table>

A unified heuristic and an annotated bibliography for a large class of earliness-tardiness scheduling problems.
Technical report, Universidad Federal da Paraíba, Brazil.
Results for $R \mid \sum \alpha_j E_j + \beta_j T_j$

Size	Our Branch-Cut-and-Price						BKS	[Şen and Bülbül, 2015]				
n	m	Solv.	Root Gap(%)	Gap (%)	Root Time	Total Time	Nod. num.	Impr. (%)	New	Solv.	Gap (%)	Time
40	2	60/60	0.04	0.00	2m	5m	3.4	0.00	0	26/60	0.16	1m
60	2	60/60	0.04	0.00	9m	12m	3.3	0.00	1	7/60	0.89	2m
60	3	60/60	0.05	0.00	6m	7m	2.9	0.01	5	7/60	0.82	2m
80	2	59/60	0.02	0.00	28m	40m	5.4	0.00	3	2/60	0.90	2m
80	4	60/60	0.11	0.00	15m	16m	3.9	0.07	15	0/60	4.54	4m
90	3	60/60	0.05	0.00	29m	34m	4.7	0.03	20	1/60	2.52	3m
100	5	59/60	0.20	0.02	31m	57m	26.7	0.10	27	0/60	8.83	5m
120	3	56/60	0.16	0.04	1h54m	3h00m	16.7	0.07	22	0/60	4.12	3m
120	4	58/60	0.23	0.01	1h24m	2h12m	17.7	0.17	31	0/60	6.98	4m

With subset row cuts, root gap is 6 times smaller (40 and 60 jobs instances).

In 30 minutes, CPLEX solved 49/60 inst. with 40 jobs, 36/120 inst. with 60 jobs, 3/120 inst. with 80 jobs, 2/60 inst. with 90 jobs.

Final remarks

- First use of non-robust cuts for scheduling problems
- Significant computational improvement over the existing exact approaches for the problem
 - scales up to 4 machines and 80 jobs for “generic” instances with setup times
 - solves 532/540 instances without setup times with up to 4 machines and 120 jobs
- Need more testing on “less generic” instances
- Ways to improve results:
 - A better heuristic for generic instances is needed!
 - First convergence is very slow
 - More balanced branching
 - Separation for rank-1 cuts with 4 and more rows
 - Enumeration [Baldacci et al., 2008]
 - Avoid discretisation

References II

Minimizing total tardiness for scheduling identical parallel machines with family setups.

Minimizing total tardiness in an unrelated parallel-machine scheduling problem.