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The scheduling problem we want to solve

» Set M of unrelated machines
» njobs,eachjobjeJ={1,...,n} has
» processing time p/’f, dependent on the machine
» release and due dates r; and ¢
» earliness and tardiness unitary penalties a; and /3,

» Given completion time C; of job j € J in the schedule, its
cost is

oEj + B;Tj = aj - max{0, d; — C;} + ;- max{0, C; — d;}

» There is a sequence-dependent setup time s,‘-f/- if job j is
scheduled immediately after job i/ on machine k.

» The objective is to minimize the total earliness/tardiness
cost.

» Problem’s notation:

RIG:S,’-}!Z,-Q/E/WJTJ
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Heterogeneous Vehicle Routing with Time Windows

Set | of customers, each
i € I with demand d,
service time s; and time
window [r;, dj].

Set M of vehicle types,
each k € M with a depot
i|l|+k with Uy vehicles of
capacity Q, with fixed
cost f, travel costs c,’j‘ and
travel distances df for
each pair (i,j) € UM of
customers/depots.

Objective: minimize the
total fixed and travel cost. cmy 4 Mg o I

om0ty
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Similarities between problems

HVRP

UMSP

Heterogeneous vehicles
Vehicle routes
Capacity resource
Time resource
Service times
Distances between customers

Minimizing vehicle cost
and total travelled distance

Unrelated machines
Machine schedules
One job at a time
Time resource
Job processing times
Setup times

Minimizing “just-in-time” penalty
(sort of “soft” time windows)



State-of-the-art exact algorithms for Vehicle Routing

Instances with 100—150 customers are routinely solved to
optimality

[

E

Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017).
Improved branch-cut-and-price for capacitated vehicle routing.
Mathematical Programming Computation, 9(1):61—100.

Pecin, D., Contardo, C., Desaulniers, G., and Uchoa, E. (2017).

New enhancements for the exact solution of the vehicle routing problem
with time windows.

INFORMS Journal on Computing, 29(3):489-502.

Pessoa, A., Sadykov, R., and Uchoa, E. (2017).

Enhanced branch-cut-and-price algorithm for heterogeneous fleet
vehicle routing problems.

Cadernos do LOGIS, number 3.
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Existing exact approaches in the literature for
scheduling on parallel machines with sum criteria
R| s,’-/‘. | > ajE; + 3;T; Only MIP formulations, up to 5 machines
and 12 jobs.
R > T;  Abranch-and-bound [Shim and Kim, 2007], up to 5
machines and 20 jobs.
R || > w;T; A branch-and-bound [Liaw et al., 2003], up to 4
machines and 18 jobs.
Q| sf/‘- | > Ej+ T; AMIP and a Benders decomposition
[Balakrishnan et al., 1999], up to 20 jobs.
P s | > T; Abranch-and-bound [Schaller, 2014], up to 3
machines and 14 jobs.
P r| > wT; Abranch-and-bound [Jouglet and Savourey, 2011],
up to 5 machines and 20 jobs
P || >~ w;T; A Branch-Cut-and-Price [Pessoa et al., 2010], up to
4 machines and 100 jobs.
R | a,r,s5 | > w;T; Abranch-and-price
[Lopes and de Carvalho, 2007], up to 50 machines
and 150 iobs
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Set covering (master) formulation

» Q, — set of pseudo-schedules for machine k €¢ M

» &’ — number of times that job j appears in
pseudo-schedule w.

» ¢, — cost of pseudo-schedule w.

» Binary variable A} = 1 if and only if pseudo-schedule w is
assigned to machine k e M

min Z Z Culs

keM weQy
o> @ = 1, Vel
keM weQy
X £ 1, VkeM,
wE

Ao € {0,1}, VYwe Q Vk e M.



Pricing subproblem for machine k € M
Extended graph Gk

Arc (i,],t) — setup time between job / and j is started at time
t, and job j is started at time t + sff

Variable x| — arc (i, /, t) in the solution or not

J={1,2,3},T=8,p1=4,po=1,p3=3,5;=1,Vi,jed
Pseudo-schedules 0-2-3-2-0 and 0-2-1-0 are shown

10/26



Pricing subproblem: the labelling algorithm

Given dual solution 7 of the restricted master problem, the
pricing subproblem is

o= B o H—s,-j—&—pj o t
min &, = ¢, Zaf%’_..z .(cj ) - X
jed i,jed, i#]
teT

i.e. the shortest path problem in the extended graph.

Labels

Each label L = (¢, jb, t*) represents a partial pseudo-schedule.

It dominates another label L’ if

L=t b= <t
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The labeling algorithm

t =0 1 2
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The labeling algorithm

j =0 ]
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The labeling algorithm
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The labeling algorithm

Do both labels need to be kept in bucket (4,4)?
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The labeling algorithm

(8]

LM

The labels represent partial paths 0-1-4 and 0-3-4
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Fixing of arc variables by reduced costs

» Zpy — optimal value of the current restricted master.
» ZK, — minimum reduced cost for machine keM.

» Lagrangian lower bound: Zay + > ey ZX .-

» Zi,c — value of the best known integer solution.

» ZK ,(a) — current minimum reduced cost of a path

containing arc a € Gy.

» Arc a can be removed (it cannot take part of any improving
solution) if

Z.'sub Z Zsub + Zam = Zinc-
k'e M\{k}

» A good heuristic is very important!
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Computing sub( ) [Ibaraki and Nakamura, 1994]
How to compute the shortest path passing through arc

a:(i,j,t)eGk?
O O O O O

o Q0 O O 0+0O
O O O OO
&+-0 O O OO O OO0

. F(i, t) — the value of the shortest path from s to node (i, t)
2. B(k,t+ sl + pf) — the value of the shortest path from d

to node (j, t+sf+pf)
3. Zk

sub

—

k
(a=(i.j.k)) = F(i.t) + B, t + sk + pf) + i

@ Ibaraki, T. and Nakamura, Y. (1994).
A dynamic programming method for single machine scheduling.

European Journal of Operational Research, 76(1):72 — 82.
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Dual price smoothing stabilization

» 7 — current dual solution of the restricted master
m* — dual solution giving the best Lagrangian bound so far
We solve the pricing problem using the dual vector

v

v

7=(01-a) 7T+a- 7

where a € [0, 1).

Parameter « is automatically adjusted in each column
generation iteration using the sub-gradient of the
Lagrangian function at ' [Pessoa et al., 2017].

v

@ Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2017).

Automation and combination of linear-programming based stabilization
techniques in column generation.

INFORMS Journal on Computing, (Forthcoming).
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Branching

» Branching on aggregated arc variables

> xffe{o,1},

0<i<T

i.e. job i immediately precedes job j on machine k or not
» Multi-phase strong branching is used
» Branching history is kept is used through pseudo-costs
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Subset-Row Cuts (SRCS) [Jepsen et al., 2008]
Given C C J and a multiplier p, the (C, p)-Subset Row Cut is:

3D IID S FREVE]
keM wey ieC
Special case of Chvatal-Gomory rank-1 cuts obtained by

rounding of |C| set-packing constraints in the master

Here we use only 1-row and 3-row cuts with p = %
We separate them by enumeration.

@ Mads Jepsen and Bjorn Petersen and Simon Spoorendonk and David
Pisinger (2008).
Subset-Row Inequalities Applied to the Vehicle-Routing Problem with
Time Windows.

Operations Research, 56(2):497-511.
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Impact on the pricing problem

Given dual value v, < 0 for each active subset row cut y € T,
defined for subset C, of jobs, modified reduced cost of
pseudo-schedule w € Q is :

- H*S,'/‘+,Dj7 ) t 1 t
= > (¢ ) XD |5 X X
ijed, teT ~er JECy, ied,

i), teT

Each cut adds to labels an additional binary state Sé (parity of
the number of times jobs in C, appear in the partial schedule
L), resulting in a weaker domination:

_ I/ . - -7
¢t— ) w»,<ct insteadof <t
~er: S§>S$l
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Limited memory cuts [Pecin et al., 2017]
For each active cut v € T, define a memory M., of vertices
(jobs) which “remember” state S,.
If j- ¢ M., then SL « 0.
Vectors St are sparser = stronger domination

/// O \\\

O, O /o T Y
./L OQ O b :O \:Mv

- -~ ‘~___,’\\f \“*GC,Y\ O//

» = ’

@ Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017).
Improved branch-cut-and-price for capacitated vehicle routing.
Mathematical Programming Computation, 9(1):61-100.
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k .
Results for R | rj, s | >~ ojEj + B Tj, small setup times
Initial heuristic and instances by [Kramer and Subramanian, 2017]

Size With cuts BKS
Root Gap Root Total Improv.
n m| #Solved Gap (%) (%) Time Time #Nodes (%) #New
40 2 | 60/60 0.01  0.00 4m 4m 11| 0.12 22
60 2 | 60/60 0.32 0.00 23m 28m 35| 0.33 46
60 3 | 60/60 0.86 0.00 16m 35m 10.6| 0.48 47
80 2 | 60/60 0.23 0.00 thi2m 1h37m 57| 0.14 41
80 4 | 48/60 1.69 052  37m 4h33m 92.0| 0.26 50
Size Without cuts
Root Gap Root  Total
I
n m| #Solved Gap (%) (%) Time Time #Nodes
40 2 | 60/60 1.72  0.00 3m 6m 44.8
60 2 | 59/60 1.99 0.05 13m 1h55m 412.8
60 3 | 60/60 223 0.00 10m 1h13m 361.5

@ Kramer, A. and Subramanian, A. (2017).
A unified heuristic and an annotated bibliography for a large class of
earliness-tardiness scheduling problems.
Technical report, Universidad Federal da Paraiba, Brazil.
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k .
Results for R | rj, sii | >~ oy Ej + 5;Tj, larger setup times
Initial heuristic and instances by [Kramer and Subramanian, 2017]

Size With cuts BKS
Root  Gap Root Total Improv.

n m| #Solved Gap (%) (%) Time Time #Nodes (%) #New
40 2 60/60 0.43  0.00 13m 16m 28| 0.76 46
60 2 58/60 222 0.06 48m 2h56m 23.2| 1.34 58
60 3 45/60 4.29 1.21 29m  5h45m 85.8| 1.56 55
80 2 28/60 2.89 1.32 1h59m  9h49m 48.8| 0.80 54
80 4 10/60 5.17 3.91 1h18m 10h58m 120.4 | 0.39 27

Size Without cuts

Root Gap Root  Total
Gap (%) (%) Time Time 'hodes
40 2 | 60/60 4.08 0.00 5m 24m 172.6
60 2 43/60 4.71 1.21 23m 7h06m 1246.2
60 3 37/60 5.99 214 18m 7h05m 1702.3

n m| #Solved

@ Kramer, A. and Subramanian, A. (2017).
A unified heuristic and an annotated bibliography for a large class of
earliness-tardiness scheduling problems.

Technical report, Universidad Federal da Paraiba, Brazil.
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Results for R || > o, Ej + 5T,

Size Our Branch-Cut-and-Price BKS  |[Sen and Bulbul, 2015]
Root Gap Root Total Nod.|Impr. Gap
nom SN o) (%) Time Time num.| (%) ov| SOV (o) TMe
40 2/60/60 0.04 0.00 2m 5m 3.4/0.00 0 |26/60 0.16 1m
60 2|60/60 0.04 0.00 9m 12m 3.3/0.00 1 7/60 0.89 2m
60 3|60/60 0.05 0.00 6m 7m 29(0.01 5 | 7/60 0.82 2m
80 2|59/60 0.02 0.00 28m 40m 54(0.00 3 | 2/60 0.90 2m
80 4|60/60 0.11 0.00 15m 16m 3.9/0.07 15 | 0/60 4.54 4m
90 3|60/60 0.05 0.00 29m 34m 4.7/0.03 20 | 1/60 252 3m
100 5|59/60 0.20 0.02 31m 57m 26.7/0.10 27 | 0/60 8.83 5m
120 3(56/60 0.16 0.04 1h54m 3h0Om 16.7(0.07 22 | 0/60 4.12 3m
120 4(58/60 0.23 0.01 1h24m 2h12m 17.7({0.17 31 | 0/60 6.98 4m

With subset row cuts, root gap is 6 times smaller (40 and 60 jobs instances).
In 30 minutes, CPLEX solved 49/60 inst. with 40 jobs, 36/120 inst. with 60

jobs, 3/120 inst. with 80 jobs, 2/60 inst. with 90 jobs.

B Sen, H. and Bilbdl, K. (2015).
A strong preemptive relaxation for weighted tardiness and

earliness/tardiness problems on unrelated parallel machines.
INFORMS Journal on Computing, 27(1):135—-150.
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Final remarks

v

First use of non-robust cuts for scheduling problems

Significant computational improvement over the existing
exact approaches for the problem
» scales up to 4 machines and 80 jobs for “generic” instances
with setup times
» solves 532/540 instances without setup times with up to 4
machines and 120 jobs

Need more testing on “less generic” instances
Ways to improve results:

A better heuristic for generic instances is needed!
First convergence is very slow

More balanced branching

Separation for rank-1 cuts with 4 and more rows
Enumeration [Baldacci et al., 2008]

Avoid discretisation

v

A2

v

vV vy VY VvVYy
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