Evolutionary Algorithms -- From Theory to Practice and Back

by Carola Doerr - june, 19th 2019 - 1:00pm - Room 110

by Carola Doerr - june, 19th 2019 - 1:00pm - Room 110

Most real-world optimization problems do not have an explicit problem formulation, but only allow to compute the quality of selected solution candidates. Solving such black-box optimization problems requires iterative procedures which use the feedback gained from previous evaluations to determine the strategy by which the next solution candidates are generated. Many black-box optimization algorithms, such as Simulated Annealing, Evolutionary Algorithms, Swarm Intelligence Algorithms, are randomized -- making it very difficult to analyze their performances mathematically.

In the last 15 years, the theory of randomized black-box optimization has advanced considerably, and has contributed to efficient optimization by providing insights into the working principles of black-box optimization which are hard or impossible to obtain by empirical means. On the other hand, empirically-guided benchmarking has opened up new research directions for theoretical investigations.

In this presentation we will discuss the state of the art in the theory of randomized black-box optimization algorithms. As part of this critical survey we will also mention a number of open questions and connections to other fields of Computer Science.